((__CHANNEL__) == TIM_CHANNEL_1) ? ((__HANDLE__)->Instance->CCR1 = (__COMPARE__)) :
时间: 2024-06-15 13:03:31 浏览: 198
这是一个三元运算符表达式,用于根据条件选择执行不同的代码。它的语法如下:
```c
(condition) ? (expression_if_true) : (expression_if_false);
```
在这个例子中,条件是 `(__CHANNEL__) == TIM_CHANNEL_1`,如果条件为真(即 `__CHANNEL__` 等于 `TIM_CHANNEL_1`),则执行 `(__HANDLE__)->Instance->CCR1 = (__COMPARE__)`,否则不执行任何操作。
相关问题
__HAL_TIM_ENABLE(__HANDLE__) 怎么用
`__HAL_TIM_ENABLE(__HANDLE__)` 是一种用于STM32微控制器 HAL (Hardware Abstraction Layer) 库中的函数,它主要用于启用定时器功能。`__HANDLE__` 是一个预处理器宏,通常代表一个定时器句柄,该句柄是在之前通过 `TIM_HandleTypeDef htim;` 这样的结构体声明并初始化后获取的。
这个函数的作用是激活指定的定时器,使其开始工作,一般会在定时器配置完成后调用,例如设置了定时器的工作模式、分频系数等。启用定时器后,它将开始计数,并按照预先设定的条件(比如定时周期)触发中断或生成脉冲输出。
使用时,你需要先实例化一个定时器驱动程序结构,然后配置定时器的各项属性,最后调用 `__HAL_TIM_ENABLE(__HANDLE__)` 来启动定时器。这里是一个简单的示例:
```c
// 初始化定时器
TIM_HandleTypeDef htim;
__HAL_TIM_Init(&htim, &htim.Instance->Init); // 使用预定义的结构体成员指针
// 配置定时器
__HAL_TIM_ConfigChannel(&htim, &htim.Init.Channel);
// 启动定时器
__HAL_TIM_ENABLE(&htim);
```
用HAL库实现TIM1_CH4触发ADC采样
以下是使用HAL库实现TIM1_CH4触发ADC采样的示例代码:
```c
#include "stm32f4xx.h"
#include "stm32f4xx_hal.h"
#define ADC_CHANNELS 1
#define ADC_RESOLUTION 12
ADC_HandleTypeDef hadc1;
DMA_HandleTypeDef hdma_adc1;
TIM_HandleTypeDef htim1;
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_ADC1_Init(void);
static void MX_TIM1_Init(void);
int main(void)
{
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
MX_DMA_Init();
MX_ADC1_Init();
MX_TIM1_Init();
HAL_ADC_Start_DMA(&hadc1, (uint32_t *)adc_values, ADC_CHANNELS);
HAL_TIM_Base_Start(&htim1);
HAL_TIM_OC_Start(&htim1, TIM_CHANNEL_4);
while (1)
{
}
}
void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim)
{
if (htim->Instance == TIM1 && htim->Channel == HAL_TIM_ACTIVE_CHANNEL_4)
{
HAL_ADC_Start_DMA(&hadc1, (uint32_t *)adc_values, ADC_CHANNELS);
}
}
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = 16;
RCC_OscInitStruct.PLL.PLLN = 336;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4;
RCC_OscInitStruct.PLL.PLLQ = 7;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1
|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
{
Error_Handler();
}
}
static void MX_ADC1_Init(void)
{
ADC_ChannelConfTypeDef sConfig = {0};
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
hadc1.Init.Resolution = ADC_RESOLUTION;
hadc1.Init.ScanConvMode = DISABLE;
hadc1.Init.ContinuousConvMode = ENABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING;
hadc1.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T1_CC4;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = ADC_CHANNELS;
hadc1.Init.DMAContinuousRequests = ENABLE;
hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
sConfig.Channel = ADC_CHANNEL_0;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
}
static void MX_DMA_Init(void)
{
__HAL_RCC_DMA2_CLK_ENABLE();
hdma_adc1.Instance = DMA2_Stream0;
hdma_adc1.Init.Channel = DMA_CHANNEL_0;
hdma_adc1.Init.Direction = DMA_PERIPH_TO_MEMORY;
hdma_adc1.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_adc1.Init.MemInc = DMA_MINC_ENABLE;
hdma_adc1.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
hdma_adc1.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
hdma_adc1.Init.Mode = DMA_CIRCULAR;
hdma_adc1.Init.Priority = DMA_PRIORITY_HIGH;
hdma_adc1.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
if (HAL_DMA_Init(&hdma_adc1) != HAL_OK)
{
Error_Handler();
}
__HAL_LINKDMA(&hadc1, DMA_Handle, hdma_adc1);
}
static void MX_TIM1_Init(void)
{
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
htim1.Instance = TIM1;
htim1.Init.Prescaler = 0;
htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
htim1.Init.Period = 500;
htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
if (HAL_TIM_Base_Init(&htim1) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_OC_Init(&htim1) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 250;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_4) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_OC4REF;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_ENABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
}
```
在这个示例代码中,使用TIM1_CH4触发ADC采样。TIM1_CH4被配置为PWM模式,当输出脉冲完成时,触发ADC采样。ADC使用单次转换模式,转换完成后通过DMA传输到内存。在main函数中,启动ADC和定时器,并通过HAL_TIM_PWM_PulseFinishedCallback回调函数触发ADC采样。
注意:在使用TIM1_CH4触发ADC采样时,需要将ADC的外部触发源设置为TIM1_CC4。此外,需要确保TIM1_CH4输出脉冲的占空比足够小,以确保ADC转换完成后DMA传输到内存。
阅读全文