解释这行代码 F12 = np.diag(1.9*X)

时间: 2024-04-19 17:26:55 浏览: 109
这行代码创建了一个对角矩阵,并将其赋值给变量 F12。np.diag() 函数是 NumPy 库中的一个函数,用于创建一个对角矩阵。 在这个例子中,np.diag(1.9*X) 创建了一个对角矩阵,其中对角线上的元素是 1.9 乘以数组 X 的每个元素。具体来说,对角线上的元素是 [1.9*X[0], 1.9*X[1], ..., 1.9*X[N-1]],其中 N 是数组 X 的长度。 最后,这个对角矩阵会被赋值给变量 F12。
相关问题

def SubOptFun(CurrX, TruRegRad, GradVect, HessMat): """ :param CurrX: :param TruRegRad: :param GradVect: :param HessMat: :return: """ CurrX = np.array(CurrX) n = len(CurrX) EigVal, EigVect = np.linalg.eig(HessMat) EigValIndex = np.argsort(EigVal) # 排序,找最小特征值 EigVect = EigVect[:,EigValIndex] # 找到,特征值对应的特征向量 if np.min(EigVal) >= 1e-6 : NewtonSolution = (-1) * EigVect @ np.diag(EigVal ** (-1) ) @ EigVect.T @ GradVect NormD = np.linalg.norm(NewtonSolution) if NormD <= TruRegRad: XStar = CurrX + NewtonSolution return XStar else : InitLambda = 0 else : InitLambda = (-1) * np.min(EigVal) + 1e-6 IterStep = 1.0 IterLambda = InitLambda + IterStep while True : NewtonSolution = (-1) * EigVect @ np.diag((IterLambda + EigVal) ** (-1) ) @ EigVect.T @ GradVect NormD = np.linalg.norm(NewtonSolution) if NormD >= TruRegRad + 1e-6: InitLambda = IterLambda IterStep = 2 * IterStep IterLambda = InitLambda + IterStep elif NormD <= TruRegRad - 1e-6: EndLambda = IterLambda break else: XStar = CurrX + NewtonSolution return XStar while True : IterLambda = 0.5 * (InitLambda + EndLambda) NewtonSolution = (-1) * EigVect @ np.diag((IterLambda + EigVal) ** (-1) ) @ EigVect.T @ GradVect NormD = np.linalg.norm(NewtonSolution) if NormD >= TruRegRad + 1e-6: InitLambda = IterLambda elif NormD <= TruRegRad - 1e-6: EndLambda = IterLambda else: XStar = CurrX + NewtonSolution return XStar

这段代码是一个实现子优函数的函数,用于求解无约束优化问题的近似解。其中,参数CurrX是当前的优化变量,TruRegRad是真实约束半径,GradVect是梯度向量,HessMat是黑塞矩阵。该函数首先计算黑塞矩阵的特征值和特征向量,并通过排序找到最小特征值对应的特征向量。如果最小特征值大于等于一个很小的值,则使用牛顿法求解无约束优化问题的近似解,否则通过二分法找到满足真实约束半径的最小特征值。最后,通过牛顿法求解无约束优化问题的近似解并返回。

D = np.diag(np.diag(A))

这是一个 Python 代码片段,使用了 NumPy 库。其中,A 是一个矩阵,np.diag(A) 返回矩阵 A 的对角线元素构成的一维数组,再次调用 np.diag() 并传入这个一维数组作为参数,就可以得到一个以这些元素为对角线元素的矩阵。最终,将这个矩阵赋值给变量 D,即完成了从 A 矩阵中提取对角线元素构成新矩阵的操作。这个操作常用于线性代数中的矩阵分解和特征值计算等应用中。
阅读全文

相关推荐

优化:import numpy as np import scipy.signal as signal import scipy.io.wavfile as wavfile import pywt import matplotlib.pyplot as plt def wiener_filter(x, fs, cutoff): # 维纳滤波函数 N = len(x) freqs, Pxx = signal.periodogram(x, fs=fs) H = np.zeros(N) H[freqs <= cutoff] = 1 Pxx_smooth = np.maximum(Pxx, np.max(Pxx) * 1e-6) H_smooth = np.maximum(H, np.max(H) * 1e-6) G = H_smooth / (H_smooth + 1 / Pxx_smooth) y = np.real(np.fft.ifft(np.fft.fft(x) * G)) return y def kalman_filter(x): # 卡尔曼滤波函数 Q = np.diag([0.01, 1]) R = np.diag([1, 0.1]) A = np.array([[1, 1], [0, 1]]) H = np.array([[1, 0], [0, 1]]) x_hat = np.zeros((2, len(x))) P = np.zeros((2, 2, len(x))) x_hat[:, 0] = np.array([x[0], 0]) P[:, :, 0] = np.eye(2) for k in range(1, len(x)): x_hat[:, k] = np.dot(A, x_hat[:, k-1]) P[:, :, k] = np.dot(np.dot(A, P[:, :, k-1]), A.T) + Q K = np.dot(np.dot(P[:, :, k], H.T), np.linalg.inv(np.dot(np.dot(H, P[:, :, k]), H.T) + R)) x_hat[:, k] += np.dot(K, x[k] - np.dot(H, x_hat[:, k])) P[:, :, k] = np.dot(np.eye(2) - np.dot(K, H), P[:, :, k]) y = x_hat[0, :] return y # 读取含有噪声的语音信号 rate, data = wavfile.read("shengyin.wav") data = data.astype(float) / 32767.0 # 维纳滤波 y_wiener = wiener_filter(data, fs=rate, cutoff=1000) # 卡尔曼滤波 y_kalman = kalman_filter(data) # 保存滤波后的信号到文件中 wavfile.write("wiener_filtered.wav", rate, np.int32(y_wiener * 32767.0)) wavfile.write("kalman_filtered.wav", rate, np.int32(y_kalman * 32767.0))

翻译代码import numpy as np from cvxopt import matrix, solvers solvers.options['show_progress'] = False # 市场出清,考虑网络阻塞 def market_clearing(alpha): # 供给曲线的截距和斜率 a_real = np.array([15.0, 18.0]) b_real = np.array([0.01, 0.008]) # 需求曲线的截距和斜率 c_real = np.array([40.0, 40.0]) * -1 d_real = np.array([0.08, 0.06]) # 机组功率上下限 p_min = np.array([0.0, 0.0]) p_max = np.array([500.0, 500.0]) # 负荷需求上下限 q_min = np.zeros(2) q_max = np.array([500.0, 666.666666666667]) J_g = ([[-0.333333333333333, -0.333333333333333, -0.666666666666667], [0.333333333333334, -0.666666666666667, -0.333333333333333], [0, 0, 0]]) J = np.array([[-0.333333333333333, 0.0, 0.333333333333333, -0.333333333333334], [-0.333333333333333, 0.0, 0.333333333333333, 0.666666666666667], [-0.666666666666667, 0.0, 0.666666666666667, 0.333333333333333]]) J_max = np.array([25.0, 1000.0, 1000.0, 25.0, 1000.0, 1000.0]) P = matrix(np.diag(np.append(b_real, d_real))) q = matrix(np.append(alpha, c_real)) G = matrix(np.vstack((J, -J, np.diag(-np.ones(4)), np.diag(np.ones(4))))) h = matrix(np.hstack((J_max, -p_min, -q_min, p_max, q_max))) A = matrix(np.hstack((-np.ones(2), np.ones(2)))).T b = matrix(0.0) sv = solvers.qp(P, q, G, h, A, b) miu1 = sv['z'][0:3] miu2 = sv['z'][3:6] nodal_price = (np.ones((3, 1)) * sv['y'][0] - np.dot(J_g, miu1 - miu2)).squeeze() nodal_price_g = np.array([nodal_price[0], nodal_price[2]]) mc_amount = np.array(sv['x'][:2]).squeeze() cost_real = 0.5 * b_real * mc_amount ** 2 + a_real * mc_amount cost_declare = mc_amount * np.transpose(nodal_price_g) profit = cost_declare - cost_real return nodal_price_g, profit if __name__ == '__main__': alpha = np.array([20.29, 22.98]) print(market_clearing(alpha))

import os import numpy as np import matplotlib.pyplot as plt from PIL import Image from colorcet.plotting import arr from sklearn.cluster import SpectralClustering from sklearn.decomposition import PCA from tensorflow.keras.preprocessing import image from tensorflow.keras.applications.resnet50 import ResNet50 from tensorflow.keras.applications.resnet50 import preprocess_input # 定义加载图片函数 def load_image(img_path): img = image.load_img(img_path, target_size=(224, 224)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) return x # 加载ResNet50模型 model = ResNet50(weights='imagenet', include_top=False, pooling='avg') # 加载图片并提取特征向量 img_dir = 'D:/wjd' img_names = os.listdir(img_dir) X = [] for img_name in img_names: img_path = os.path.join(img_dir, img_name) img = load_image(img_path) features = model.predict(img)[0] X.append(features) # 将特征向量转化为矩阵 X = np.array(X) X = np.real(X) arr_real = arr.astype('float') # 计算相似度矩阵 S = np.dot(X, X.T) # 归一化相似度矩阵 D = np.diag(np.sum(S, axis=1)) L = D - S L_norm = np.dot(np.dot(np.sqrt(np.linalg.inv(D)), L), np.sqrt(np.linalg.inv(D))) # 计算特征向量 eigvals, eigvecs = np.linalg.eig(L_norm) idx = eigvals.argsort()[::-1] eigvals = eigvals[idx] eigvecs = eigvecs[:, idx] Y = eigvecs[:, :2] # 使用谱聚类进行分类 n_clusters = 5 clustering = SpectralClustering(n_clusters=n_clusters, assign_labels="discretize", random_state=0).fit(Y) # 可视化聚类结果 pca = PCA(n_components=2) X_pca = pca.fit_transform(X) plt.scatter(X_pca[:, 0], X_pca[:, 1], c=clustering.labels_, cmap='rainbow') plt.show(),这行代码出现了这个numpy.ComplexWarning: Casting complex values to real discards the imaginary part The above exception was the direct cause of the following exception问题

import os import numpy as np import matplotlib.pyplot as plt from PIL import Image from colorcet.plotting import arr from sklearn.cluster import SpectralClustering from sklearn.decomposition import PCA from tensorflow.keras.preprocessing import image from tensorflow.keras.applications.resnet50 import ResNet50 from tensorflow.keras.applications.resnet50 import preprocess_input # 定义加载图片函数 def load_image(img_path): img = image.load_img(img_path, target_size=(224, 224)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) return x # 加载ResNet50模型 model = ResNet50(weights='imagenet', include_top=False, pooling='avg') # 加载图片并提取特征向量 img_dir = 'D:/wjd' img_names = os.listdir(img_dir) X = [] for img_name in img_names: img_path = os.path.join(img_dir, img_name) img = load_image(img_path) features = model.predict(img)[0] X.append(features) # 将特征向量转化为矩阵 X = np.array(X) # 将复数类型的数据转换为实数类型 X = np.absolute(X) # 计算相似度矩阵 S = np.dot(X, X.T) # 归一化相似度矩阵 D = np.diag(np.sum(S, axis=1)) L = D - S L_norm = np.dot(np.dot(np.sqrt(np.linalg.inv(D)), L), np.sqrt(np.linalg.inv(D))) # 计算特征向量 eigvals, eigvecs = np.linalg.eig(L_norm) idx = eigvals.argsort()[::-1] eigvals = eigvals[idx] eigvecs = eigvecs[:, idx] Y = eigvecs[:, :2] # 使用谱聚类进行分类 n_clusters = 5 clustering = SpectralClustering(n_clusters=n_clusters, assign_labels="discretize", random_state=0).fit(Y) # 可视化聚类结果 pca = PCA(n_components=2) X_pca = pca.fit_transform(X) plt.scatter(X_pca[:, 0], X_pca[:, 1], c=clustering.labels_, cmap='rainbow') plt.show(),反复会出现numpy.ComplexWarning: Casting complex values to real discards the imaginary part The above exception was the direct cause of the following exception,这个问题

# 定义昂贵的函数 def expensive_func(t): return np.sum(t**2 - 10*np.cos(2*np.pi*t) + 10) # 定义高斯核函数 def gaussian_kernel(x, y, theta): return np.exp(-theta * cdist(x, y)**2) # 定义对数似然函数 def log_likelihood(params, x, y): theta, sigma = params k = gaussian_kernel(x, x, theta) + sigma**2 * np.eye(len(x)) try: L = np.linalg.cholesky(k) except np.linalg.LinAlgError: return -np.inf alpha = np.linalg.solve(L.T, np.linalg.solve(L, y)) return -0.5*y.T.dot(alpha) - np.sum(np.log(np.diag(L))) - 0.5*len(x)*np.log(2*np.pi) # 定义预测函数 def predict(x, y, x0, theta, sigma): k = gaussian_kernel(x, x, theta) + sigma**2 * np.eye(len(x)) k0 = gaussian_kernel(x, x0.reshape(1, -1), theta) k00 = gaussian_kernel(x0.reshape(1, -1), x0.reshape(1, -1), theta) try: L = np.linalg.cholesky(k) except np.linalg.LinAlgError: return np.nan, np.nan alpha = np.linalg.solve(L.T, np.linalg.solve(L, y)) mu = k0.T.dot(alpha) v = k00 - k0.T.dot(np.linalg.solve(L.T, np.linalg.solve(L, k0))) return mu, v # 生成随机数据 np.random.seed(666) X = np.random.uniform(-20, 20, size=(200, 10)) y = np.array([expensive_func(x) for x in X]) # 优化超参数 initial_params = [1, 1] bounds = [(1e-5, None), (1e-5, None)] res = minimize(lambda params: -log_likelihood(params, X, y), initial_params, bounds=bounds) theta, sigma = res.x # 在随机点上进行预测 x0 = np.random.uniform(-20, 20, size=(1, 10)) mu, v = predict(X, y, x0, theta, sigma) # 计算误差 exact_val = expensive_func(x0) error = (exact_val - mu)**2 print("预测误差:", error) print("预测方差:", v)注释一下

最新推荐

recommend-type

基于 .NET 5 + Ant Design Vue 的 Admin Fx.zip

基于 .NET 5 + Ant Design Vue 的 Admin FxColder.Admin.AntdVueWeb后台快速开发框架,.NET5+Ant Design Vue版本代码(GitHub)https://github.com/Coldairarrow/Colder.Admin.AntdVue文档(GitHub)https://github.com/Coldairarrow/Colder.Admin.AntdVue/wiki代码(码云镜像)https ://gitee.com/Coldairarrow/Colder.Admin.AntdVue文档(码云镜像)https://gitee.com/Coldairarrow/Colder.Admin.AntdVue/wikis在线预览地址http://coldairarrow.gitee.io/colder.amin.antdvue.preview.web/ (账号/密码Admin 123456)
recommend-type

基于java的KTV点歌系统设计新版源码+数据库+说明.zip

基于java的KTV点歌系统设计新版源码+数据库+说明 项目经过严格调试,确保可以运行! 开发语言:Java 框架:ssm 技术:JSP JDK版本:JDK1.8 服务器:tomcat7 数据库:mysql 5.7(一定要5.7版本) 数据库工具:Navicat11 开发软件:eclipse/myeclipse/idea Maven包:Maven3.3.9
recommend-type

【java毕业设计】学生心理咨询评估系统源码(springboot+vue+mysql+说明文档+LW).zip

管理员可以管理个人中心,用户管理,试题管理,试卷管理,考试管理等。用户参加考试。 项目包含完整前后端源码和数据库文件 环境说明: 开发语言:Java 框架:springboot,mybatis JDK版本:JDK1.8 数据库:mysql 5.7 数据库工具:Navicat11 开发软件:eclipse/idea Maven包:Maven3.3
recommend-type

Angular实现MarcHayek简历展示应用教程

资源摘要信息:"MarcHayek-CV:我的简历的Angular应用" Angular 应用是一个基于Angular框架开发的前端应用程序。Angular是一个由谷歌(Google)维护和开发的开源前端框架,它使用TypeScript作为主要编程语言,并且是单页面应用程序(SPA)的优秀解决方案。该应用不仅展示了Marc Hayek的个人简历,而且还介绍了如何在本地环境中设置和配置该Angular项目。 知识点详细说明: 1. Angular 应用程序设置: - Angular 应用程序通常依赖于Node.js运行环境,因此首先需要全局安装Node.js包管理器npm。 - 在本案例中,通过npm安装了两个开发工具:bower和gulp。bower是一个前端包管理器,用于管理项目依赖,而gulp则是一个自动化构建工具,用于处理如压缩、编译、单元测试等任务。 2. 本地环境安装步骤: - 安装命令`npm install -g bower`和`npm install --global gulp`用来全局安装这两个工具。 - 使用git命令克隆远程仓库到本地服务器。支持使用SSH方式(`***:marc-hayek/MarcHayek-CV.git`)和HTTPS方式(需要替换为具体用户名,如`git clone ***`)。 3. 配置流程: - 在server文件夹中的config.json文件里,需要添加用户的电子邮件和密码,以便该应用能够通过内置的联系功能发送信息给Marc Hayek。 - 如果想要在本地服务器上运行该应用程序,则需要根据不同的环境配置(开发环境或生产环境)修改config.json文件中的“baseURL”选项。具体而言,开发环境下通常设置为“../build”,生产环境下设置为“../bin”。 4. 使用的技术栈: - JavaScript:虽然没有直接提到,但是由于Angular框架主要是用JavaScript来编写的,因此这是必须理解的核心技术之一。 - TypeScript:Angular使用TypeScript作为开发语言,它是JavaScript的一个超集,添加了静态类型检查等功能。 - Node.js和npm:用于运行JavaScript代码以及管理JavaScript项目的依赖。 - Git:版本控制系统,用于代码的版本管理及协作开发。 5. 关于项目结构: - 该应用的项目文件夹结构可能遵循Angular CLI的典型结构,包含了如下目录:app(存放应用组件)、assets(存放静态资源如图片、样式表等)、environments(存放环境配置文件)、server(存放服务器配置文件如上文的config.json)等。 6. 开发和构建流程: - 开发时,可能会使用Angular CLI来快速生成组件、服务等,并利用热重载等特性进行实时开发。 - 构建应用时,通过gulp等构建工具可以进行代码压缩、ES6转译、单元测试等自动化任务,以确保代码的质量和性能优化。 7. 部署: - 项目最终需要部署到服务器上,配置文件中的“baseURL”选项指明了服务器上的资源基础路径。 8. 关于Git仓库: - 压缩包子文件的名称为MarcHayek-CV-master,表明这是一个使用Git版本控制的仓库,且存在一个名为master的分支,这通常是项目的主分支。 以上知识点围绕Angular应用“MarcHayek-CV:我的简历”的创建、配置、开发、构建及部署流程进行了详细说明,涉及了前端开发中常见的工具、技术及工作流。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

深入剖析:内存溢出背后的原因、预防及应急策略(专家版)

![深入剖析:内存溢出背后的原因、预防及应急策略(专家版)](https://d8it4huxumps7.cloudfront.net/uploads/images/65e82a01a4196_dangling_pointer_in_c_2.jpg?d=2000x2000) 参考资源链接:[Net 内存溢出(System.OutOfMemoryException)的常见情况和处理方式总结](https://wenku.csdn.net/doc/6412b784be7fbd1778d4a95f?spm=1055.2635.3001.10343) # 1. 内存溢出的概念及影响 内存溢出,又称
recommend-type

Java中如何对年月日时分秒的日期字符串作如下处理:如何日期分钟介于两个相连的半点之间,就将分钟数调整为前半点

在Java中,你可以使用`java.time`包中的类来处理日期和时间,包括格式化和调整。下面是一个示例,展示了如何根据给定的日期字符串(假设格式为"yyyy-MM-dd HH:mm:ss")进行这样的处理: ```java import java.text.SimpleDateFormat; import java.time.LocalDateTime; import java.time.ZoneId; import java.time.ZonedDateTime; public class Main { public static void main(String[] args
recommend-type

Crossbow Spot最新更新 - 获取Chrome扩展新闻

资源摘要信息:"Crossbow Spot - Latest News Update-crx插件" 该信息是关于一款特定的Google Chrome浏览器扩展程序,名为"Crossbow Spot - Latest News Update"。此插件的目的是帮助用户第一时间获取最新的Crossbow Spot相关信息,它作为一个RSS阅读器,自动聚合并展示Crossbow Spot的最新新闻内容。 从描述中可以提取以下关键知识点: 1. 功能概述: - 扩展程序能让用户领先一步了解Crossbow Spot的最新消息,提供实时更新。 - 它支持自动更新功能,用户不必手动点击即可刷新获取最新资讯。 - 用户界面设计灵活,具有美观的新闻小部件,使得信息的展现既实用又吸引人。 2. 用户体验: - 桌面通知功能,通过Chrome的新通知中心托盘进行实时推送,确保用户不会错过任何重要新闻。 - 提供一个便捷的方式来保持与Crossbow Spot最新动态的同步。 3. 语言支持: - 该插件目前仅支持英语,但开发者已经计划在未来的版本中添加对其他语言的支持。 4. 技术实现: - 此扩展程序是基于RSS Feed实现的,即从Crossbow Spot的RSS源中提取最新新闻。 - 扩展程序利用了Chrome的通知API,以及RSS Feed处理机制来实现新闻的即时推送和展示。 5. 版权与免责声明: - 所有的新闻内容都是通过RSS Feed聚合而来,扩展程序本身不提供原创内容。 - 用户在使用插件时应遵守相关的版权和隐私政策。 6. 安装与使用: - 用户需要从Chrome网上应用店下载.crx格式的插件文件,即Crossbow_Spot_-_Latest_News_Update.crx。 - 安装后,插件会自动运行,并且用户可以对其进行配置以满足个人偏好。 从以上信息可以看出,该扩展程序为那些对Crossbow Spot感兴趣或需要密切跟进其更新的用户提供了一个便捷的解决方案,通过集成RSS源和Chrome通知机制,使得信息获取变得更加高效和及时。这对于需要实时更新信息的用户而言,具有一定的实用价值。同时,插件的未来发展计划中包括了多语言支持,这将使得更多的用户能够使用并从中受益。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【Java内存管理终极指南】:一次性解决内存溢出、泄漏和性能瓶颈

![【Java内存管理终极指南】:一次性解决内存溢出、泄漏和性能瓶颈](https://community.cloudera.com/t5/image/serverpage/image-id/31614iEBC942A7C6D4A6A1/image-size/large?v=v2&px=999) 参考资源链接:[Net 内存溢出(System.OutOfMemoryException)的常见情况和处理方式总结](https://wenku.csdn.net/doc/6412b784be7fbd1778d4a95f?spm=1055.2635.3001.10343) # 1. Java内存模型