解释这行代码 F12 = np.diag(1.9*X)
时间: 2024-04-19 17:26:55 浏览: 109
这行代码创建了一个对角矩阵,并将其赋值给变量 F12。np.diag() 函数是 NumPy 库中的一个函数,用于创建一个对角矩阵。
在这个例子中,np.diag(1.9*X) 创建了一个对角矩阵,其中对角线上的元素是 1.9 乘以数组 X 的每个元素。具体来说,对角线上的元素是 [1.9*X[0], 1.9*X[1], ..., 1.9*X[N-1]],其中 N 是数组 X 的长度。
最后,这个对角矩阵会被赋值给变量 F12。
相关问题
def SubOptFun(CurrX, TruRegRad, GradVect, HessMat): """ :param CurrX: :param TruRegRad: :param GradVect: :param HessMat: :return: """ CurrX = np.array(CurrX) n = len(CurrX) EigVal, EigVect = np.linalg.eig(HessMat) EigValIndex = np.argsort(EigVal) # 排序,找最小特征值 EigVect = EigVect[:,EigValIndex] # 找到,特征值对应的特征向量 if np.min(EigVal) >= 1e-6 : NewtonSolution = (-1) * EigVect @ np.diag(EigVal ** (-1) ) @ EigVect.T @ GradVect NormD = np.linalg.norm(NewtonSolution) if NormD <= TruRegRad: XStar = CurrX + NewtonSolution return XStar else : InitLambda = 0 else : InitLambda = (-1) * np.min(EigVal) + 1e-6 IterStep = 1.0 IterLambda = InitLambda + IterStep while True : NewtonSolution = (-1) * EigVect @ np.diag((IterLambda + EigVal) ** (-1) ) @ EigVect.T @ GradVect NormD = np.linalg.norm(NewtonSolution) if NormD >= TruRegRad + 1e-6: InitLambda = IterLambda IterStep = 2 * IterStep IterLambda = InitLambda + IterStep elif NormD <= TruRegRad - 1e-6: EndLambda = IterLambda break else: XStar = CurrX + NewtonSolution return XStar while True : IterLambda = 0.5 * (InitLambda + EndLambda) NewtonSolution = (-1) * EigVect @ np.diag((IterLambda + EigVal) ** (-1) ) @ EigVect.T @ GradVect NormD = np.linalg.norm(NewtonSolution) if NormD >= TruRegRad + 1e-6: InitLambda = IterLambda elif NormD <= TruRegRad - 1e-6: EndLambda = IterLambda else: XStar = CurrX + NewtonSolution return XStar
这段代码是一个实现子优函数的函数,用于求解无约束优化问题的近似解。其中,参数CurrX是当前的优化变量,TruRegRad是真实约束半径,GradVect是梯度向量,HessMat是黑塞矩阵。该函数首先计算黑塞矩阵的特征值和特征向量,并通过排序找到最小特征值对应的特征向量。如果最小特征值大于等于一个很小的值,则使用牛顿法求解无约束优化问题的近似解,否则通过二分法找到满足真实约束半径的最小特征值。最后,通过牛顿法求解无约束优化问题的近似解并返回。
D = np.diag(np.diag(A))
这是一个 Python 代码片段,使用了 NumPy 库。其中,A 是一个矩阵,np.diag(A) 返回矩阵 A 的对角线元素构成的一维数组,再次调用 np.diag() 并传入这个一维数组作为参数,就可以得到一个以这些元素为对角线元素的矩阵。最终,将这个矩阵赋值给变量 D,即完成了从 A 矩阵中提取对角线元素构成新矩阵的操作。这个操作常用于线性代数中的矩阵分解和特征值计算等应用中。
阅读全文