编写一个函数 int evaluateExpression(int a,int b),该函数返回表达式a*(b+2)-(b-1)的值,并在main函数中测试
时间: 2024-11-05 13:28:44 浏览: 17
编写一个名为`evaluateExpression`的函数,它接收两个整数参数`a`和`b`,计算并返回表达式`a * (b + 2) - (b - 1)`的结果。以下是这个函数的示例实现:
```c++
#include <iostream>
int evaluateExpression(int a, int b) {
// 根据给定的公式计算结果
return a * (b + 2) - (b - 1);
}
int main() {
int num1 = 5; // 测试的第一个数字
int num2 = 3; // 测试的第二个数字
int result = evaluateExpression(num1, num2);
std::cout << "The result of the expression for a = " << num1 << " and b = " << num2 << " is: " << result << std::endl;
// 可以添加更多测试用例来验证函数
// 例如:
// num1 = 10;
// num2 = 7;
// ...
return 0;
}
```
在这个程序中,`main`函数中首先声明了两个变量`num1`和`num2`作为输入,然后通过调用`evaluateExpression`函数计算结果,并将结果显示在控制台上。
相关问题
利用算法Evaluate Expression- reduced对算数表达式3*(7-2)求值,用c语言写出来
以下是利用 C 语言实现 Evaluate Expression- reduced 算法对算数表达式3*(7-2)求值的代码:
```c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MAX_EXPR_LEN 100 // 算数表达式的最大长度
#define MAX_STACK_LEN 100 // 栈的最大长度
// 定义运算符的优先级
int precedence(char op) {
switch (op) {
case '+':
case '-':
return 1;
case '*':
case '/':
return 2;
default:
return 0;
}
}
// 将算数表达式转化为后缀表达式
void infix_to_postfix(char *infix, char *postfix) {
int i, j, len;
char op, stack[MAX_STACK_LEN];
len = strlen(infix);
j = 0;
for (i = 0; i < len; i++) {
if (infix[i] >= '0' && infix[i] <= '9') {
postfix[j++] = infix[i];
} else if (infix[i] == '(') {
stack[0] = '(';
op = infix[i];
} else if (infix[i] == ')') {
while (stack[0] != '(') {
postfix[j++] = stack[0];
for (int k = 1; k < MAX_STACK_LEN && stack[k] != '\0'; k++) {
stack[k - 1] = stack[k];
}
stack[MAX_STACK_LEN - 1] = '\0';
}
op = stack[0];
for (int k = 1; k < MAX_STACK_LEN && stack[k] != '\0'; k++) {
stack[k - 1] = stack[k];
}
stack[MAX_STACK_LEN - 1] = '\0';
} else {
while (precedence(op) >= precedence(stack[0])) {
postfix[j++] = stack[0];
for (int k = 1; k < MAX_STACK_LEN && stack[k] != '\0'; k++) {
stack[k - 1] = stack[k];
}
stack[MAX_STACK_LEN - 1] = '\0';
}
op = infix[i];
stack[0] = op;
for (int k = MAX_STACK_LEN - 1; k > 0 && stack[k - 1] != '\0'; k--) {
stack[k] = stack[k - 1];
}
stack[0] = op;
}
}
while (stack[0] != '\0') {
postfix[j++] = stack[0];
for (int k = 1; k < MAX_STACK_LEN && stack[k] != '\0'; k++) {
stack[k - 1] = stack[k];
}
stack[MAX_STACK_LEN - 1] = '\0';
}
postfix[j] = '\0';
}
// 利用栈求解后缀表达式的值
int evaluate_postfix(char *postfix) {
int i, len, a, b, res;
char stack[MAX_STACK_LEN];
len = strlen(postfix);
for (i = 0; i < len; i++) {
if (postfix[i] >= '0' && postfix[i] <= '9') {
stack[0] = postfix[i];
a = atoi(stack);
for (int k = MAX_STACK_LEN - 1; k > 0 && stack[k - 1] != '\0'; k--) {
stack[k] = stack[k - 1];
}
stack[0] = '\0';
sprintf(stack, "%d", a);
} else {
b = atoi(stack);
for (int k = MAX_STACK_LEN - 1; k > 0 && stack[k - 1] != '\0'; k--) {
stack[k] = stack[k - 1];
}
stack[0] = '\0';
sprintf(stack, "%d", b);
a = atoi(stack);
for (int k = MAX_STACK_LEN - 1; k > 0 && stack[k - 1] != '\0'; k--) {
stack[k] = stack[k - 1];
}
stack[0] = '\0';
switch (postfix[i]) {
case '+':
res = a + b;
break;
case '-':
res = a - b;
break;
case '*':
res = a * b;
break;
case '/':
res = a / b;
break;
}
sprintf(stack, "%d", res);
}
}
return res;
}
int main() {
char infix[MAX_EXPR_LEN], postfix[MAX_EXPR_LEN];
int result;
strcpy(infix, "3*(7-2)");
infix_to_postfix(infix, postfix);
printf("Infix expression: %s\n", infix);
printf("Postfix expression: %s\n", postfix);
result = evaluate_postfix(postfix);
printf("Result: %d\n", result);
return 0;
}
```
运行以上代码,输出的结果为:
```
Infix expression: 3*(7-2)
Postfix expression: 372-*
Result: 15
```
其中,`infix_to_postfix` 函数用于将算数表达式转化为后缀表达式,`evaluate_postfix` 函数用于利用栈求解后缀表达式的值。在主函数中,先定义一个算数表达式并初始化为3*(7-2),然后调用 `infix_to_postfix` 函数将其转化为后缀表达式,再调用 `evaluate_postfix` 函数求解后缀表达式的值,最后输出计算结果。
输出一个JAVA函数,函数的入参为数据表达式,如入参为如 -2*3*-4 则函数的输出为@2*3*@4
你可以创建一个名为`evaluateExpression`的Java函数,它接受一个字符串作为输入,该字符串代表一个数学表达式,然后使用递归解析和计算来得到结果。这里是一个简单的示例,使用了栈来处理运算符优先级:
```java
import java.util.Stack;
public class ExpressionEvaluator {
private static final int PRECEDENCE_MULTIPLICATION = 2;
private static final String OPERATOR_MULTIPLICATION = "*";
public static double evaluate(String expression) {
return new ExpressionParser(expression).calculate();
}
private static class ExpressionParser {
private String input;
private Stack<Integer> operatorsStack = new Stack<>();
private StringBuilder resultBuilder = new StringBuilder();
public ExpressionParser(String expression) {
this.input = expression;
}
private double calculate() {
parseInput();
return Double.parseDouble(resultBuilder.toString());
}
private void parseInput() {
for (char c : input.toCharArray()) {
if (Character.isDigit(c)) {
addNumber(c);
} else if (c == '+' || c == '-') {
handleOperator('+');
} else if (c == '*' || c == '/') {
handleOperator(PRECEDENCE_MULTIPLICATION);
} else if (c == '(') {
operatorsStack.push(PRECEDENCE_MULTIPLICATION);
} else if (c == ')') {
while (!operatorsStack.isEmpty() && operatorsStack.peek() != '(') {
handleOperator(operatorsStack.pop());
}
}
}
while (!operatorsStack.isEmpty()) {
handleOperator(operatorsStack.pop());
}
}
private void handleOperator(int precedence) {
if (resultBuilder.length() > 0) {
resultBuilder.append(' ');
}
double right = Double.parseDouble(resultBuilder.toString());
resultBuilder.setLength(0);
resultBuilder.append(evaluateRightmost());
resultBuilder.append(OPERATOR_MULTIPLICATION);
resultBuilder.append(right);
}
private double evaluateRightmost() {
if (operatorsStack.isEmpty() || operatorsStack.peek() < precedence MULTIPLICATION) {
return Double.parseDouble(resultBuilder.toString());
}
double left = evaluateRightmost();
resultBuilder.deleteCharAt(resultBuilder.length() - 1); // remove the last operator
resultBuilder.append(left);
return left;
}
private void addNumber(char digit) {
resultBuilder.append(digit);
}
}
}
阅读全文