warning: in the working copy of 'AI Reconstruction/MODL/trn.py', LF will be replaced by CRLF the next time Git touches it

时间: 2024-04-02 10:29:49 浏览: 151
这个警告是由Git版本控制系统发出的,它表示在你的工作副本中,换行符LF将被换成CRLF。这通常是因为你的操作系统使用不同的换行符格式。 LF(Line Feed)是Unix和Linux系统中使用的换行符,而CRLF(Carriage Return Line Feed)是Windows系统中使用的换行符。当你在Windows系统上使用Git时,Git会自动将LF转换为CRLF以适应Windows的换行符格式。 这个警告的意思是,当Git下一次操作这个文件时,它将会自动将LF换行符转换为CRLF换行符。这可能会导致文件的内容发生变化,因此Git会提醒你。 如果你不希望看到这个警告,你可以在Git配置中禁用自动换行符转换。你可以使用以下命令来禁用自动转换: ``` git config --global core.autocrlf false ``` 这样设置后,Git将不再自动转换换行符,而是保留文件中原有的换行符格式。
相关问题

void MLreconstruction::GenDXFMesh(const std::string in_file,const std::string out_file) { //Create mesh for processing CMeshO m; CMeshO rm; //Open a mesh vcg::tri::io::ImporterPLY<CMeshO>::Open(m,in_file.c_str()); //Compute Normal //ComputeNormal(m); vcg::tri::PointCloudNormal<CMeshO>::Param p; p.fittingAdjNum = 10; p.smoothingIterNum = 0; p.useViewPoint = false; vcg::tri::PointCloudNormal<CMeshO>::Compute(m, p); std::cout<<"Compute normal successful"<<std::endl; //Construction through poisson //PoiReconstruct(m,rm); PoissonParam pp; MeshModelPointStream<Scalarm> meshStream(m); _Execute<Scalarm,2,BOUNDARY_NEUMANN,PlyColorAndValueVertex<Scalarm> >(&meshStream,m.bbox,rm,pp); std::cout<<"Reconstruction successful"<<std::endl; //save a mesh dxfStruct dF; vcg::tri::io::DXFStructure<CMeshO>::GenDXF(rm,dF); dF.SaveDXF(out_file.c_str()); } 请帮我读懂这段代码

这段代码是一个函数`GenDXFMesh`,它的作用是将输入的PLY文件转换为DXF文件,并且进行了一些处理和重建操作。 首先,函数创建了两个网格对象`m`和`rm`,分别用于存储输入和重建后的网格。 接下来,代码使用`vcg::tri::io::ImporterPLY<CMeshO>::Open`函数打开输入的PLY文件,并将其内容读取到网格对象`m`中。 然后,代码调用`vcg::tri::PointCloudNormal<CMeshO>::Compute`函数计算网格的法线信息。在这里,通过设置`vcg::tri::PointCloudNormal<CMeshO>::Param`结构体参数来指定计算法线的方式,如`fittingAdjNum`表示法线拟合时使用的邻域数量,`smoothingIterNum`表示法线平滑迭代次数,`useViewPoint`表示是否使用视点信息。 接着,代码使用Poisson重建算法对网格进行重建。具体的重建过程没有给出,可能是在注释的`PoiReconstruct`函数中实现的。 最后,代码使用`vcg::tri::io::DXFStructure<CMeshO>::GenDXF`函数将重建后的网格对象`rm`转换为DXF文件,并保存到指定路径`out_file`。 整个函数的流程是:读取PLY文件 -> 计算法线 -> 重建网格 -> 保存为DXF文件。

详细解释一下这段代码,每一句都要进行注解:tgt = f'/kaggle/working/{dataset}-{scene}' # Generate a simple reconstruction with SIFT (https://en.wikipedia.org/wiki/Scale-invariant_feature_transform). if not os.path.isdir(tgt): os.makedirs(f'{tgt}/bundle') os.system(f'cp -r {src}/images {tgt}/images') database_path = f'{tgt}/database.db' sift_opt = pycolmap.SiftExtractionOptions() sift_opt.max_image_size = 1500 # Extract features at low resolution could significantly reduce the overall accuracy sift_opt.max_num_features = 8192 # Generally more features is better, even if behond a certain number it doesn't help incresing accuracy sift_opt.upright = True # rotation invariance device = 'cpu' t = time() pycolmap.extract_features(database_path, f'{tgt}/images', sift_options=sift_opt, verbose=True) print(len(os.listdir(f'{tgt}/images'))) print('TIMINGS --- Feature extraction', time() - t) t = time() matching_opt = pycolmap.SiftMatchingOptions() matching_opt.max_ratio = 0.85 # Ratio threshold significantly influence the performance of the feature extraction method. It varies depending on the local feature but also on the image type # matching_opt.max_distance = 0.7 matching_opt.cross_check = True matching_opt.max_error = 1.0 # The ransac error threshold could help to exclude less accurate tie points pycolmap.match_exhaustive(database_path, sift_options=matching_opt, device=device, verbose=True) print('TIMINGS --- Feature matching', time() - t) t = time() mapper_options = pycolmap.IncrementalMapperOptions() mapper_options.extract_colors = False mapper_options.min_model_size = 3 # Sometimes you want to impose the first image pair for initialize the incremental reconstruction mapper_options.init_image_id1 = -1 mapper_options.init_image_id2 = -1 # Choose which interior will be refined during BA mapper_options.ba_refine_focal_length = True mapper_options.ba_refine_principal_point = True mapper_options.ba_refine_extra_params = True maps = pycolmap.incremental_mapping(database_path=database_path, image_path=f'{tgt}/images', output_path=f'{tgt}/bundle', options=mapper_options) print('TIMINGS --- Mapping', time() - t)

这段代码主要是使用 PyCOLMAP 库实现对图像的特征提取、特征匹配和增量式三维重建。具体解释如下: ```tgt = f'/kaggle/working/{dataset}-{scene}'``` 定义了一个字符串变量 tgt,表示输出路径。 ```if not os.path.isdir(tgt):``` 如果输出路径不存在,则创建该路径。 ```os.makedirs(f'{tgt}/bundle')``` 在输出路径下创建子目录 bundle。 ```os.system(f'cp -r {src}/images {tgt}/images')``` 将源目录 src 中的 images 目录复制到输出路径下的 images 目录中。 ```database_path = f'{tgt}/database.db'``` 定义一个字符串变量 database_path,表示 PyCOLMAP 库中使用的数据库文件路径。 ```sift_opt = pycolmap.SiftExtractionOptions()``` 创建一个 SIFT 特征提取选项对象。 ```sift_opt.max_image_size = 1500``` 设置 SIFT 特征提取选项对象的最大图像尺寸为 1500×1500 像素。 ```sift_opt.max_num_features = 8192``` 设置 SIFT 特征提取选项对象的最大特征点数为 8192 个。 ```sift_opt.upright = True``` 设置 SIFT 特征提取选项对象的旋转不变性为 True,即不考虑图像旋转。 ```device = 'cpu'``` 定义一个字符串变量 device,表示计算设备类型。 ```pycolmap.extract_features(database_path, f'{tgt}/images', sift_options=sift_opt, verbose=True)``` 调用 PyCOLMAP 库中的 extract_features 函数,对输出路径下的图像进行 SIFT 特征提取,并将特征保存到数据库文件中。 ```print(len(os.listdir(f'{tgt}/images')))``` 输出输出路径下的图像数量。 ```print('TIMINGS --- Feature extraction', time() - t)``` 输出特征提取所花费的时间。 ```matching_opt = pycolmap.SiftMatchingOptions()``` 创建一个 SIFT 特征匹配选项对象。 ```matching_opt.max_ratio = 0.85``` 设置 SIFT 特征匹配选项对象的最大匹配比率为 0.85。 ```matching_opt.max_distance = 0.7``` 设置 SIFT 特征匹配选项对象的最大匹配距离为 0.7。 ```matching_opt.cross_check = True``` 设置 SIFT 特征匹配选项对象的交叉匹配为 True,即同时匹配两幅图像。 ```matching_opt.max_error = 1.0``` 设置 SIFT 特征匹配选项对象的最大误差为 1.0。 ```pycolmap.match_exhaustive(database_path, sift_options=matching_opt, device=device, verbose=True)``` 调用 PyCOLMAP 库中的 match_exhaustive 函数,对数据库文件中的特征进行 SIFT 特征匹配,并将匹配结果保存到数据库文件中。 ```print('TIMINGS --- Feature matching', time() - t)``` 输出特征匹配所花费的时间。 ```mapper_options = pycolmap.IncrementalMapperOptions()``` 创建一个增量式三维重建选项对象。 ```mapper_options.extract_colors = False``` 设置增量式三维重建选项对象的颜色提取为 False,即不提取图像颜色信息。 ```mapper_options.min_model_size = 3``` 设置增量式三维重建选项对象的最小模型大小为 3。 ```mapper_options.init_image_id1 = -1``` 设置增量式三维重建选项对象的第一张图像的 ID 为 -1,表示不指定。 ```mapper_options.init_image_id2 = -1``` 设置增量式三维重建选项对象的第二张图像的 ID 为 -1,表示不指定。 ```mapper_options.ba_refine_focal_length = True``` 设置增量式三维重建选项对象的相机内参的优化为 True。 ```mapper_options.ba_refine_principal_point = True``` 设置增量式三维重建选项对象的相机主点的优化为 True。 ```mapper_options.ba_refine_extra_params = True``` 设置增量式三维重建选项对象的额外参数的优化为 True。 ```maps = pycolmap.incremental_mapping(database_path=database_path, image_path=f'{tgt}/images', output_path=f'{tgt}/bundle', options=mapper_options)``` 调用 PyCOLMAP 库中的 incremental_mapping 函数,对数据库文件中的匹配结果进行增量式三维重建,并将重建结果保存到输出路径下的 bundle 目录中。 ```print('TIMINGS --- Mapping', time() - t)``` 输出增量式三维重建所花费的时间。
阅读全文

相关推荐

帮我给每一行代码添加注释 class DeepKalmanFilter(nn.Module): def __init__(self, config): super(DeepKalmanFilter, self).__init__() self.emitter = Emitter(config.z_dim, config.emit_hidden_dim, config.obs_dim) self.transition = Transition(config.z_dim, config.trans_hidden_dim) self.posterior = Posterior( config.z_dim, config.post_hidden_dim, config.obs_dim ) self.z_q_0 = nn.Parameter(torch.zeros(config.z_dim)) self.emit_log_sigma = nn.Parameter(config.emit_log_sigma * torch.ones(config.obs_dim)) self.config = config @staticmethod def reparametrization(mu, sig): return mu + torch.randn_like(sig) * sig @staticmethod def kl_div(mu0, sig0, mu1, sig1): return -0.5 * torch.sum(1 - 2 * sig1.log() + 2 * sig0.log() - (mu1 - mu0).pow(2) / sig1.pow(2) - (sig0 / sig1).pow(2)) def loss(self, obs): time_step = obs.size(1) batch_size = obs.size(0) overshoot_len = self.config.overshooting kl = torch.Tensor([0]).to(self.config.device) reconstruction = torch.Tensor([0]).to(self.config.device) emit_sig = self.emit_log_sigma.exp() for s in range(self.config.sampling_num): z_q_t = self.z_q_0.expand((batch_size, self.config.z_dim)) for t in range(time_step): trans_loc, trans_sig = self.transition(z_q_t) post_loc, post_sig = self.posterior(trans_loc, trans_sig, obs[:, t]) z_q_t = self.reparametrization(post_loc, post_sig) emit_loc = self.emitter(z_q_t) reconstruction += ((emit_loc - obs[:, t]).pow(2).sum(dim=0) / 2 / emit_sig + self.emit_log_sigma * batch_size / 2).sum() if t > 0: over_loc, over_sig = self.transition(overshooting[:overshoot_len - 1]) over_loc = torch.cat([trans_loc.unsqueeze(0), over_loc], dim=0) over_sig = torch.cat([trans_sig.unsqueeze(0), over_sig], dim=0) else: over_loc = trans_loc.unsqueeze(0) over_sig = trans_sig.unsqueeze(0) overshooting = self.reparametrization(over_loc, over_sig) kl = kl + self.kl_div(post_loc.expand_as(over_loc), post_sig.expand_as(over_sig), over_loc, over_sig) / min(t + 1, self.config.overshooting) reconstruction = reconstruction / self.config.sampling_num kl = kl / self.config.sampling_num return reconstruction, kl

最新推荐

recommend-type

A2DP音频过程总结.docx

2. 重建(Reconstruction):根据每个子频段的scale factor和比特数,重建子频段的编码前的数据。 3. 逆向多相滤波器组(Inverse Filter Bank):将频域信号转换回时间序列。 4. PCM数据重建:将重建后的数据转换为...
recommend-type

【中国房地产业协会-2024研报】2024年第三季度房地产开发企业信用状况报告.pdf

行业研究报告、行业调查报告、研报
recommend-type

【中国银行-2024研报】美国大选结果对我国芯片产业发展的影响和应对建议.pdf

行业研究报告、行业调查报告、研报
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自