struct w{ int u; bool operator<(const W&X)const{ return a[x.u] > a[u]; } };

时间: 2024-05-20 21:15:33 浏览: 13
这段代码中定义了一个结构体 w,其中包含一个整型变量 u。同时,重载了小于运算符,使得两个 w 对象可以进行比较。比较的方式是根据数组 a 中元素的大小,其中 a 是一个全局数组。具体来说,如果 w1 的 u 对应的 a[u] 大于 w2 的 u 对应的 a[u],则 w1 < w2,反之则 w1 > w2。这样可以用于一些需要按照某个权值进行排序的场景,比如 Dijkstra 算法中的优先队列。
相关问题

帮我解释一下这段代码的意思struct Edge{int u,v,w;bool operator<(const Edge& W)const{return w<W.w;}}edge[M];

这段代码定义了一个结构体Edge,它包含了三个整型成员变量u、v和w,以及一个重载的小于号(<)运算符。 在这个结构体中,成员变量u、v和w表示了图中一条边的起点、终点和权重。而operator<函数则用于定义Edge对象之间的小于关系。它接受一个常引用参数W,表示另一个Edge对象,然后比较当前对象的权重w与参数对象的权重W.w的大小。 这个重载的小于号运算符函数的实现采用了const成员函数的形式,并返回一个布尔类型的值。若当前Edge对象的权重小于参数对象的权重,则返回true,否则返回false。 最后,代码中还定义了一个Edge类型的数组edge,它的大小为M(可能是在其他地方定义的常量)。这个数组用于存储多个Edge对象,以便在图算法中使用。 综上所述,这段代码定义了一个用于表示图中边的结构体Edge,并重载了小于号运算符,使得可以根据边的权重进行比较。而edge数组则用于存储多个Edge对象。

bool operator<(const NodeType& s) const

这是一个在自定义数据结构中定义小于运算符(<)的函数,用于排序等操作。它的参数是一个 NodeType 类型的对象 s,返回值是一个 bool 类型,表示当前对象是否小于 s。 在 C++ 中,可以通过重载小于运算符来定义自定义类型的排序规则。在使用 STL 中的容器时,如果需要按照自定义的规则对元素进行排序,就需要定义小于运算符。 例如,如果要定义一个结构体 Node,其中包含两个整型成员变量 x 和 y,可以按照 x 从小到大、y 从大到小的顺序来排序,可以这样定义小于运算符: ``` struct Node { int x, y; bool operator<(const Node& s) const { if (x != s.x) { return x < s.x; } return y > s.y; } }; ``` 这样定义之后,就可以使用 STL 中的 sort() 等函数对 Node 类型的对象进行排序了。

相关推荐

使用c++编写设有编号为1、2、…、n的n个物品,它们的重量分别为w1、w2、…、wn,价值分别为v1、v2、…、vn,其中wi、vi(1≤i≤n)均为正数。  有一个背包可以携带的最大重量不超过W。求解目标:在不超过背包负重的前提下,使背包装入的总价值最大。 函数接口定义: void Knap() 裁判测试程序样例: //求解背包问题的算法 #include <stdio.h> #include <string.h> #include <iostream> #include <algorithm> using namespace std; #define MAXN 51 //问题表示 int n; double W; //限重 struct NodeType { int no; double w; double v; double p; //p=v/w float x; bool operator<(const NodeType &s) const { return p>s.p; //按p递减排序 } }; NodeType A[MAXN]={{0}}; //下标0不用 //求解结果表示 double V; //最大价值 bool cmp(const NodeType &a,const NodeType &b) { return a.no<b.no; } void Knap(); int main() { cin>>n>>W; for(int i=1;i<=n;i++) { cin>>A[i].no>>A[i].w>>A[i].v;A[i].x=0; } for (int i=1;i<=n;i++) //求v/w A[i].p=A[i].v/A[i].w; sort(A+1,A+n+1); //排序 Knap(); sort(A+1,A+n+1,cmp); for(int j=1;j<=n;j++) cout<<A[j].no<<" "<<A[j].x*A[j].v<<endl; cout<<V; return 0; } /* 请在这里填写答案 */ 输入格式: 第一行物品数n和背包容量W,接着的n行中输入每个物品的编号,重量和价值。 输出格式: 输出装入背包的物品信息,共n行,按物品编号递增排序的物品编号及价值(物品编号从1开始)。最后一行输出总价值。 输入样例1: 5 100 1 10 20 2 20 30 3 30 66 4 40 40 5 50 60 输出样例1: 1 20 2 30 3 66 4 0 5 48 164

如果您的结构体中包含 QMap<自定义枚举类型, QMap<自定义枚举类型, 子结构体>>,则需要分别为该结构体、子结构体以及自定义枚举类型定义等号和不等号运算符。 先来看自定义枚举类型的重载运算符。假设该枚举类型的名称为 MyEnum,需要按照以下方式定义 == 和 != 运算符: 复制 enum class MyEnum { A, B, C }; bool operator==(const MyEnum& lhs, const MyEnum& rhs) { return static_cast<int>(lhs) == static_cast<int>(rhs); } bool operator!=(const MyEnum& lhs, const MyEnum& rhs) { return !(lhs == rhs); } 在上述代码中,我们将 MyEnum 转换为 int 类型进行比较,因为 enum class 默认没有定义等号和不等号运算符。 接下来是子结构体的重载运算符,假设子结构体的名称为 SubStruct,包含两个整数 x 和 y,则需要按照以下方式定义 == 和 != 运算符: 复制 struct SubStruct { int x; int y; bool operator==(const SubStruct& other) const { return x == other.x && y == other.y; } bool operator!=(const SubStruct& other) const { return !(*this == other); } }; 最后是包含 QMap<自定义枚举类型, QMap<自定义枚举类型, SubStruct>> 的结构体的重载运算符,假设该结构体的名称为 MyStruct,需要按照以下方式定义 == 和 != 运算符: 复制 struct MyStruct { QMap<MyEnum, QMap<MyEnum, SubStruct>> aa; bool operator==(const MyStruct& other) const { return aa == other.aa; } bool operator!=(const MyStruct& other) const { return !(*this == other); } }; 在上述代码中,我们直接利用了 QMap 的默认等号运算符,因为其已经对子结构体进行了深度比较。因此,我们只需要为 MyStruct 定义等号和不等号运算符,将其与其他 MyStruct 对象进行比较即可。,你的这种方法系统会报错

#include<iostream> #include<string> #include<algorithm> #include<cstring> #include<vector> using namespace std; //使用C++的标准名字空间 const int N = 1010; //用关键字const来定义常量 struct BigNum { //定义结构体 BigNum,用于存储大整数 int len; int num[N]; BigNum() { memset(num, 0, sizeof num); len = 0; } BigNum(string str) { memset(num, 0, sizeof num); len = str.length(); for (int i = 0; i < len; i++) { num[i] = str[len - 1 - i] - '0'; } } bool operator < (const BigNum &b) const { // 小于号运算符重载函数,用于比较两个 BigNum 类型的对象的大小 if (len != b.len) { return len < b.len; } for (int i = len - 1; i >= 0; i--) { if (num[i] != b.num[i]) { return num[i] < b.num[i]; } } return false; } bool operator > (const BigNum &b) const { //大于号运算符重载函数,用于比较两个 BigNum 类型的对象的大小 return b < *this; } bool operator <= (const BigNum &b) const { //小于等于号运算符重载函数,用于比较两个 BigNum 类型的对象的大小 return !(b < *this); } bool operator >= (const BigNum &b) const { //大于等于号运算符重载函数,用于比较两个 BigNum 类型的对象的大小 return !(*this < b); } bool operator == (const BigNum &b) const { //等于号运算符重载函数,用于比较两个 BigNum 类型的对象是否相等 return !(*this < b) && !(b < *this); } bool operator != (const BigNum &b) const { //不等于号运算符重载函数,用于比较两个 BigNum 类型的对象是否不相等 return *this < b || b < *this; }这段函数的设计思路是什么?

为以下c++代码每行加上注释:#include <iostream> #include <queue> using namespace std; struct Node { int level; //当前节点所在层 int profit; //当前节点产生的总价值 int weight; //当前节点产生的总重量 float bound; //当前节点的价值上界 bool operator<(const Node& other) const { return bound < other.bound; //按价值上界从大到小排序 } }; float bound(Node u, int n, int* w, int* p, int c) { if(u.weight>=c) //已经超重,价值上界为0 { return 0; } float bound=u.profit; int j=u.level+1; int totweight=u.weight; while ((j<n)&&(totweight+w[j]<=c)) { totweight+=w[j]; //选第j件物品 bound+=p[j]; j++; } if (j<n) { bound+=(c - totweight)p[j]/w[j]; // 加上部分物品的价值 } return bound; } int knapsack(int n, int w, int* p, int c) { priority_queue<Node> Q; Node u, v; u.level = -1; u.profit = 0; u.weight = 0; u.bound = bound(u, n, w, p, c); int maxprofit = 0; Q.push(u); while (!Q.empty()) { u = Q.top(); Q.pop(); if (u.bound > maxprofit) { v.level = u.level + 1; v.weight = u.weight + w[v.level]; v.profit = u.profit + p[v.level]; if (v.weight <= c && v.profit > maxprofit) { maxprofit = v.profit; // 更新最大价值 } v.bound=bound(v,n,w,p,c); if (v.bound > maxprofit) { Q.push(v); // 左儿子节点入队 } v.weight=u.weight; v.profit=u.profit; v.bound=bound(v,n,w,p,c); if (v.bound > maxprofit) { Q.push(v); // 右儿子节点入队 } } } return maxprofit; } int main() { int n = 5; // 物品数量 int w[] = {2, 2, 6, 5, 4}; // 物品重量数组 int p[] = {6, 3, 5, 4, 6}; // 物品价值数组 int c = 10; // 背包容量 cout << "最大价值为:" << knapsack(n, w, p, c) << endl; return 0; }

最新推荐

recommend-type

基于stm32+FreeRTOS+ESP8266的实时天气系统

【作品名称】:基于stm32+FreeRTOS+ESP8266的实时天气系统 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【项目介绍】:项目简介 基于stm32F407+FreeRTOS+ESP8266的实时气象站系统,通过物联网技术实时读取天气情况,温度以及自带了一个计时功能。 所需设备 stm32F407,淘晶驰串口屏,ESP8266; 串口屏连接串口3,ESP8266连接串口2,串口1用于打印状态。 实现过程 通过对ESP8266发送AT指令,从服务器读取天气的json数据,然后通过cJSON解码数据,最后FreeRTOS对任务进行管理(FreeRTOS和cJSON有冲突,需要将cJSON申请内存空间的函数替换成FreeRTOS申请内存的函数,每次解码后,一定要释放内存,否则解码会卡死,而且需要把Heap_size设置稍微大一点,推荐设置为4096)
recommend-type

地县级城市建设2022-2002 公厕数 公厕数-三类以上公厕数 市容环卫专用车辆设备总数 省份 城市.xlsx

数据含省份、行政区划级别(细分省级、地级市、县级市)两个变量,便于多个角度的筛选与应用 数据年度:2002-2022 数据范围:全693个地级市、县级市、直辖市城市,含各省级的汇总tongji数据 数据文件包原始数据(由于多年度指标不同存在缺失值)、线性插值、回归填补三个版本,提供您参考使用。 其中,回归填补无缺失值。 填补说明: 线性插值。利用数据的线性趋势,对各年份中间的缺失部分进行填充,得到线性插值版数据,这也是学者最常用的插值方式。 回归填补。基于ARIMA模型,利用同一地区的时间序列数据,对缺失值进行预测填补。 包含的主要城市: 通州 石家庄 藁城 鹿泉 辛集 晋州 新乐 唐山 开平 遵化 迁安 秦皇岛 邯郸 武安 邢台 南宫 沙河 保定 涿州 定州 安国 高碑店 张家口 承德 沧州 泊头 任丘 黄骅 河间 廊坊 霸州 三河 衡水 冀州 深州 太原 古交 大同 阳泉 长治 潞城 晋城 高平 朔州 晋中 介休 运城 永济 .... 等693个地级市、县级市,含省级汇总 主要指标:
recommend-type

基于嵌入式ARMLinux的播放器的设计与实现 word格式.doc

本文主要探讨了基于嵌入式ARM-Linux的播放器的设计与实现。在当前PC时代,随着嵌入式技术的快速发展,对高效、便携的多媒体设备的需求日益增长。作者首先深入剖析了ARM体系结构,特别是针对ARM9微处理器的特性,探讨了如何构建适用于嵌入式系统的嵌入式Linux操作系统。这个过程包括设置交叉编译环境,优化引导装载程序,成功移植了嵌入式Linux内核,并创建了适合S3C2410开发板的根文件系统。 在考虑到嵌入式系统硬件资源有限的特点,通常的PC机图形用户界面(GUI)无法直接应用。因此,作者选择了轻量级的Minigui作为研究对象,对其实体架构进行了研究,并将其移植到S3C2410开发板上,实现了嵌入式图形用户界面,使得系统具有简洁而易用的操作界面,提升了用户体验。 文章的核心部分是将通用媒体播放器Mplayer移植到S3C2410开发板上。针对嵌入式环境中的音频输出问题,作者针对性地解决了Mplayer播放音频时可能出现的不稳定性,实现了音乐和视频的无缝播放,打造了一个完整的嵌入式多媒体播放解决方案。 论文最后部分对整个项目进行了总结,强调了在嵌入式ARM-Linux平台上设计播放器所取得的成果,同时也指出了一些待改进和完善的方面,如系统性能优化、兼容性提升以及可能的扩展功能等。关键词包括嵌入式ARM-Linux、S3C2410芯片、Mplayer多媒体播放器、图形用户界面(GUI)以及Minigui等,这些都反映出本文研究的重点和领域。 通过这篇论文,读者不仅能了解到嵌入式系统与Linux平台结合的具体实践,还能学到如何在资源受限的环境中设计和优化多媒体播放器,为嵌入式技术在多媒体应用领域的进一步发展提供了有价值的经验和参考。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Python字符串为空判断的动手实践:通过示例掌握技巧

![Python字符串为空判断的动手实践:通过示例掌握技巧](https://img-blog.csdnimg.cn/72f88d4fc1164d6c8b9c29d8ab5ed75c.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBASGFyYm9yIExhdQ==,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. Python字符串为空判断的基础理论 字符串为空判断是Python编程中一项基本且重要的任务。它涉及检查字符串是否为空(不包含任何字符),这在
recommend-type

box-sizing: border-box;作用是?

`box-sizing: border-box;` 是 CSS 中的一个样式属性,它改变了元素的盒模型行为。默认情况下,浏览器会计算元素内容区域(content)、内边距(padding)和边框(border)的总尺寸,也就是所谓的"标准盒模型"。而当设置为 `box-sizing: border-box;` 后,元素的总宽度和高度会包括内容、内边距和边框的总空间,这样就使得开发者更容易控制元素的实际布局大小。 具体来说,这意味着: 1. 内容区域的宽度和高度不会因为添加内边距或边框而自动扩展。 2. 边框和内边距会从元素的总尺寸中减去,而不是从内容区域开始计算。
recommend-type

经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf

本文主要探讨的是"经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf",该研究专注于嵌入式指纹识别技术在实际应用中的设计和实现。嵌入式指纹识别系统因其独特的优势——无需外部设备支持,便能独立完成指纹识别任务,正逐渐成为现代安全领域的重要组成部分。 在技术背景部分,文章指出指纹的独特性(图案、断点和交叉点的独一无二性)使其在生物特征认证中具有很高的可靠性。指纹识别技术发展迅速,不仅应用于小型设备如手机或门禁系统,也扩展到大型数据库系统,如连接个人电脑的桌面应用。然而,桌面应用受限于必须连接到计算机的条件,嵌入式系统的出现则提供了更为灵活和便捷的解决方案。 为了实现嵌入式指纹识别,研究者首先构建了一个专门的开发平台。硬件方面,详细讨论了电源电路、复位电路以及JTAG调试接口电路的设计和实现,这些都是确保系统稳定运行的基础。在软件层面,重点研究了如何在ARM芯片上移植嵌入式操作系统uC/OS-II,这是一种实时操作系统,能够有效地处理指纹识别系统的实时任务。此外,还涉及到了嵌入式TCP/IP协议栈的开发,这是实现系统间通信的关键,使得系统能够将采集的指纹数据传输到远程服务器进行比对。 关键词包括:指纹识别、嵌入式系统、实时操作系统uC/OS-II、TCP/IP协议栈。这些关键词表明了论文的核心内容和研究焦点,即围绕着如何在嵌入式环境中高效、准确地实现指纹识别功能,以及与外部网络的无缝连接。 这篇论文不仅深入解析了嵌入式指纹识别系统的硬件架构和软件策略,而且还展示了如何通过结合嵌入式技术和先进操作系统来提升系统的性能和安全性,为未来嵌入式指纹识别技术的实际应用提供了有价值的研究成果。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

Python字符串为空判断的常见问题解答:解决常见疑惑

![字符串为空判断](https://img-blog.csdnimg.cn/20210620130654176.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl8zOTQ0NTExNg==,size_16,color_FFFFFF,t_70) # 1. Python字符串为空判断的必要性 在Python编程中,字符串为空判断是至关重要的,它可以帮助我们处理各种场景,例如: - 数据验证:确保用户输入或从数据库获取的
recommend-type

c++ 中 static的作用

在C++中,static是一个常用的修饰符,它可以用来控制变量和函数的存储方式和可见性。static的作用主要有以下几个方面: 1. 静态局部变量:在函数内部定义的变量,加上static关键字后,该变量就被定义成为一个静态局部变量。静态局部变量只会被初始化一次,而且只能在函数内部访问,函数结束后仍然存在,直到程序结束才会被销毁。 2. 静态全局变量:在全局变量前加上static关键字,该变量就被定义成为一个静态全局变量。静态全局变量只能在当前文件中访问,其他文件无法访问,它的生命周期与程序的生命周期相同。 3. 静态成员变量:在类中定义的静态成员变量,可以被所有该类的对象共享,它的值在所