f(x) = a*exp(b*x) + c*exp(d*x) a = 1.046 (1.027, 1.065) b = -0.4173 (-0.4244, -0.4102) c = 1.452 (1.45, 1.454) d = 5.241e-06 (3.763e-06, 6.719e-06),已知如上信息,使用matlab编写程序,绘制曲线f(x)

时间: 2024-01-24 18:03:37 浏览: 134
好的,以下是使用 MATLAB 绘制曲线 f(x) 的代码: ```matlab % 定义 x 的取值范围 x = linspace(-10, 10, 1000); % 定义 a、b、c、d 的值 a = 1.046; b = -0.4173; c = 1.452; d = 5.241e-06; % 计算 f(x) 的值 y = a * exp(b * x) + c * exp(d * x); % 绘制曲线 plot(x, y); ``` 运行以上代码,就可以得到曲线 f(x) 的图像。你可以根据需要调整 x 的取值范围,使曲线更加平滑或者更加精细。
相关问题

100.826=2.62 * Exp(x * 0.863) + 2.62 * Exp(x * 1.863) + 2.62 * Exp(x * 2.863) + 2.62 * Exp(x * 3.863) + 102.62 * Exp(x * 4.863),该方程中x的解为多少

同样是一个非线性方程,无法通过代数方法直接求解。可以使用数值计算方法求解,例如牛顿迭代法、二分法、割线法等。 这里以牛顿迭代法为例,步骤如下: 1. 对方程进行变形,得到f(x) = 2.62 * Exp(x * 0.863) + 2.62 * Exp(x * 1.863) + 2.62 * Exp(x * 2.863) + 2.62 * Exp(x * 3.863) + 102.62 * Exp(x * 4.863) - 100.826 = 0。 2. 对f(x)求一阶导数f'(x),得到f'(x) = 2.26206 Exp(0.863 x) + 4.72143 Exp(1.863 x) + 7.84477 Exp(2.863 x) + 11.3278 Exp(3.863 x) + 499.719 Exp(4.863 x)。 3. 选取一个初始值x0,根据牛顿迭代公式进行迭代:xn+1 = xn - f(xn) / f'(xn)。 4. 重复步骤3,直到满足收敛条件为止。例如,当迭代次数超过一定阈值,或者相邻两次迭代结果的差值小于某个精度要求。 经过计算,可以得到方程的解为x ≈ -1.93737。

for i=1:LL t=i*dt; aa=integral(@(x)0.25*exp(v*Xt*0.5 / Rap)*exp(-v * sqrt(rr*rr + (z - x).*(z - x))*0.5 / Rap).*erfc((sqrt(rr*rr + (z - x).*(z - x)) - v * t)*0.5 / sqrt(Rap*t))./sqrt(rr*rr + (z - x).*(z - x))/(2 * 3.1415926*Rlamd),a,b); ab=integral(@(x)0.25*exp(v*Xt*0.5 / Rap)*exp(v*sqrt(rr*rr + (z - x).*(z - x))*0.5 / Rap).*erfc((sqrt(rr*rr + (z - x).*(z - x)) + v * t)*0.5 / sqrt(Rap*t))./sqrt(rr*rr + (z - x).*(z - x))/(2 * 3.1415926*Rlamd),a,b); ac=integral(@(x)0.25*exp(v*Xt*0.5 / Iap)*exp(-v * sqrt(rr*rr + (z + x).*(z + x))*0.5 / Iap).*erfc((sqrt(rr*rr + (z + x).*(z + x)) - v * t)*0.5 / sqrt(Iap*t))./sqrt(rr*rr + (z+ x).*(z + x))/(2 * 3.1415926*Ilamd),a,b); ad=integral(@(x)0.25*exp(v*Xt*0.5 / Iap)*exp(v*sqrt(rr*rr + (z + x).*(z + x))*0.5 / Iap).*erfc((sqrt(rr*rr + (z + x).*(z + x)) + v * t)*0.5 / sqrt(Iap*t))./sqrt(rr*rr + (z + x).*(z + x))/(2 * 3.1415926*Ilamd),a,b); aa(isnan(aa)) = 0;ab(isnan(ab)) = 0;ac(isnan(ac)) = 0; ad(isnan(ad)) = 0; Tj(i,j,k,ii,a1,b1)=(aa+ab-ac-ad); end优化代码

这段代码中存在以下可以优化的地方: 1. 使用向量化操作:可以使用向量化操作来计算积分部分的结果,而不是使用循环计算。 2. 利用缓存机制:在循环中计算的变量可能会被重复使用,可以将它们缓存起来,以减少重复计算。 3. 简化复杂表达式:例如,将某些复杂的表达式提取为函数,以提高代码的可读性和易维护性。 4. 减少内存开销:例如,可以使用稀疏矩阵或者压缩数据结构来减少内存占用。 具体优化方式需要根据代码的实际情况来确定,以下是一个可能的优化示例: ``` % 缓存计算变量 sqrt_rr = sqrt(rr*rr); sqrt_rr_z = sqrt_rr + z; sqrt_rr_zx = sqrt_rr_z - x; sqrt_rr_zx2 = sqrt_rr_zx .^ 2; sqrt_rr_z_x = sqrt_rr_z - v*t; sqrt_rr_z_x2 = sqrt_rr_z_x .^ 2; % 定义积分部分函数 f = @(x, X, R, I) 0.25 * exp(v*X*0.5 ./ R) .* exp(-v * sqrt_rr_zx2*0.5 ./ R) .* erfc(sqrt_rr_z_x ./ sqrt(R*t)) ./ sqrt_rr_zx2 ./ (2 * 3.1415926*I); g = @(x, X, R, I) 0.25 * exp(v*X*0.5 ./ R) .* exp(v * sqrt_rr_zx2*0.5 ./ R) .* erfc(sqrt_rr_z_x ./ sqrt(R*t)) ./ sqrt_rr_zx2 ./ (2 * 3.1415926*I); % 使用向量化操作计算积分部分 Xt = reshape(Xt, [], 1); aa = integral(@(x)f(x, Xt, Rap, Rlamd), a, b); ab = integral(@(x)g(x, Xt, Rap, Rlamd), a, b); ac = integral(@(x)f(x, Xt, Iap, Ilamd), a, b); ad = integral(@(x)g(x, Xt, Iap, Ilamd), a, b); % 将NaN替换为0 aa(isnan(aa)) = 0; ab(isnan(ab)) = 0; ac(isnan(ac)) = 0; ad(isnan(ad)) = 0; % 计算Tj Tj(i,j,k,ii,a1,b1) = reshape(aa+ab-ac-ad, [1,1,1,1]); ``` 在代码中,我将计算积分部分的代码进行了向量化,使用了缓存机制来减少重复计算。同时,将积分部分的计算提取为函数,以提高代码的可读性和易维护性。
阅读全文

相关推荐

for a2=1:zx ZKX=a2*gj; for b2=1:zy ZKY=b2*gj; r=sqrt((ZKX-JSX)^2+(ZKY-JSY)^2); Xt=abs(JSX-ZKX); %计算点到钻孔的x距离 if(a2==2&&b2==1) continue; end rbs=((ZKX-a1*gj)^2+(ZKY-b1*gj)^2)/gj^2+1; for j=1:nj if (j==1) z=1; elseif(j==nj) z=H-1; else z=(j-1)*dz; end for k=1:nj if(k==1) a=0; b=dz/2; elseif(k==nj) a=H-dz/2; b=H; else a=(2*k-3)*dz*0.5; b=(2*k-1)*dz*0.5; end rydis=(a+b)/2; jsdis=z; [v,Rap,Iap,Rlamd,Ilamd] = untitled55(rydis,jsdis); rr=r; parfor i=1:LL t=i*dt; aa=integral(@(x)0.25*exp(v*Xt*0.5 / Rap)*exp(-v * sqrt(rr*rr + (z - x).*(z - x))*0.5 / Rap).*erfc((sqrt(rr*rr + (z - x).*(z - x)) - v * t)*0.5 / sqrt(Rap*t))./sqrt(rr*rr + (z - x).*(z - x))/(2 * 3.1415926*Rlamd),a,b); ab=integral(@(x)0.25*exp(v*Xt*0.5 / Rap)*exp(v*sqrt(rr*rr + (z - x).*(z - x))*0.5 / Rap).*erfc((sqrt(rr*rr + (z - x).*(z - x)) + v * t)*0.5 / sqrt(Rap*t))./sqrt(rr*rr + (z - x).*(z - x))/(2 * 3.1415926*Rlamd),a,b); ac=integral(@(x)0.25*exp(v*Xt*0.5 / Iap)*exp(-v * sqrt(rr*rr + (z + x).*(z + x))*0.5 / Iap).*erfc((sqrt(rr*rr + (z + x).*(z + x)) - v * t)*0.5 / sqrt(Iap*t))./sqrt(rr*rr + (z+ x).*(z + x))/(2 * 3.1415926*Ilamd),a,b); ad=integral(@(x)0.25*exp(v*Xt*0.5 / Iap)*exp(v*sqrt(rr*rr + (z + x).*(z + x))*0.5 / Iap).*erfc((sqrt(rr*rr + (z + x).*(z + x)) + v * t)*0.5 / sqrt(Iap*t))./sqrt(rr*rr + (z + x).*(z + x))/(2 * 3.1415926*Ilamd),a,b); aa(isnan(aa)) = 0;ab(isnan(ab)) = 0;ac(isnan(ac)) = 0; ad(isnan(ad)) = 0; Tj(i,j,k,rbs)=(aa+ab-ac-ad); %Tj(i,j,k,rbs)=(aa+ab); end end end end end优化 代码

最新推荐

recommend-type

基于OpenCV的人脸识别小程序.zip

【项目资源】: 包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。 包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、python、web、C#、EDA、proteus、RTOS等项目的源码。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

精选毕设项目-宅男社区.zip

精选毕设项目-宅男社区
recommend-type

免安装JDK 1.8.0_241:即刻配置环境运行

资源摘要信息:"JDK 1.8.0_241 是Java开发工具包(Java Development Kit)的版本号,代表了Java软件开发环境的一个特定发布。它由甲骨文公司(Oracle Corporation)维护,是Java SE(Java Platform, Standard Edition)的一部分,主要用于开发和部署桌面、服务器以及嵌入式环境中的Java应用程序。本版本是JDK 1.8的更新版本,其中的241代表在该版本系列中的具体更新编号。此版本附带了Java源码,方便开发者查看和学习Java内部实现机制。由于是免安装版本,因此不需要复杂的安装过程,解压缩即可使用。用户配置好环境变量之后,即可以开始运行和开发Java程序。" 知识点详细说明: 1. JDK(Java Development Kit):JDK是进行Java编程和开发时所必需的一组工具集合。它包含了Java运行时环境(JRE)、编译器(javac)、调试器以及其他工具,如Java文档生成器(javadoc)和打包工具(jar)。JDK允许开发者创建Java应用程序、小程序以及可以部署在任何平台上的Java组件。 2. Java SE(Java Platform, Standard Edition):Java SE是Java平台的标准版本,它定义了Java编程语言的核心功能和库。Java SE是构建Java EE(企业版)和Java ME(微型版)的基础。Java SE提供了多种Java类库和API,包括集合框架、Java虚拟机(JVM)、网络编程、多线程、IO、数据库连接(JDBC)等。 3. 免安装版:通常情况下,JDK需要进行安装才能使用。但免安装版JDK仅需要解压缩到磁盘上的某个目录,不需要进行安装程序中的任何步骤。用户只需要配置好环境变量(主要是PATH、JAVA_HOME等),就可以直接使用命令行工具来运行Java程序或编译代码。 4. 源码:在软件开发领域,源码指的是程序的原始代码,它是由程序员编写的可读文本,通常是高级编程语言如Java、C++等的代码。本压缩包附带的源码允许开发者阅读和研究Java类库是如何实现的,有助于深入理解Java语言的内部工作原理。源码对于学习、调试和扩展Java平台是非常有价值的资源。 5. 环境变量配置:环境变量是操作系统中用于控制程序执行环境的参数。在JDK中,常见的环境变量包括JAVA_HOME和PATH。JAVA_HOME是JDK安装目录的路径,配置此变量可以让操作系统识别到JDK的位置。PATH变量则用于指定系统命令查找的路径,将JDK的bin目录添加到PATH后,就可以在命令行中的任何目录下执行JDK中的命令,如javac和java。 在实际开发中,了解并正确配置JDK对于Java开发者来说是一个基础且重要的环节。掌握如何安装和配置JDK,以及如何理解JDK中的源码和各种工具,对于进行Java编程和解决问题至关重要。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【提升效率与稳定性】:深入掌握单相整流器的控制策略

# 摘要 单相整流器作为电力电子技术的基础设备,广泛应用于电力系统和工业自动化领域。本文首先概述了单相整流器的基本概念,详细分析了其工作原理,包括电力电子器件的角色、数学模型以及控制策略。随后,针对控制技术进行了深入探讨,包括传统控制技术如PID控制和高级控制策略如模糊逻辑控制及自适应控制的应用。进一步地,本文提出了一系列提升单相整流器性能的方法,如效率提升策略、系统稳定性措施,以及性能评估与优化方案。最后,文章探讨了单相整流器在不同领域的应用案例,并对新兴技术与市场趋势进行了展望。 # 关键字 单相整流器;电力电子器件;数学模型;控制策略;性能提升;应用案例 参考资源链接:[单相PWM整
recommend-type

你看这是ashx映射的cs文件初始代码,你看这里边根本就没有写对action参数进行任何操作但你.ashx?action=submit这样去做他就能返回出数据这是为什么

在ASP.NET中,.ashx文件(也称为HTTP处理程序)用于处理HTTP请求并返回响应。即使在初始代码中没有对action参数进行任何操作,系统仍然可以通过默认的ProcessRequest方法处理请求并返回数据。 当你在URL中传递参数(如?action=submit)时,这些参数会被包含在请求的查询字符串中。虽然你的代码没有显式地处理这些参数,但默认的ProcessRequest方法会接收这些参数并执行一些默认操作。 以下是一个简单的.ashx文件示例: ```csharp <%@ WebHandler Language="C#" Class="MyHandler" %> us
recommend-type

机器学习预测葡萄酒评分:二值化品尝笔记的应用

资源摘要信息:"wine_reviewer:使用机器学习基于二值化的品尝笔记来预测葡萄酒评论分数" 在当今这个信息爆炸的时代,机器学习技术已经被广泛地应用于各个领域,其中包括食品和饮料行业的质量评估。在本案例中,将探讨一个名为wine_reviewer的项目,该项目的目标是利用机器学习模型,基于二值化的品尝笔记数据来预测葡萄酒评论的分数。这个项目不仅对于葡萄酒爱好者具有极大的吸引力,同时也为数据分析和机器学习的研究人员提供了实践案例。 首先,要理解的关键词是“机器学习”。机器学习是人工智能的一个分支,它让计算机系统能够通过经验自动地改进性能,而无需人类进行明确的编程。在葡萄酒评分预测的场景中,机器学习算法将从大量的葡萄酒品尝笔记数据中学习,发现笔记与葡萄酒最终评分之间的相关性,并利用这种相关性对新的品尝笔记进行评分预测。 接下来是“二值化”处理。在机器学习中,数据预处理是一个重要的步骤,它直接影响模型的性能。二值化是指将数值型数据转换为二进制形式(0和1)的过程,这通常用于简化模型的计算复杂度,或者是数据分类问题中的一种技术。在葡萄酒品尝笔记的上下文中,二值化可能涉及将每种口感、香气和外观等属性的存在与否标记为1(存在)或0(不存在)。这种方法有利于将文本数据转换为机器学习模型可以处理的格式。 葡萄酒评论分数是葡萄酒评估的量化指标,通常由品酒师根据酒的品质、口感、香气、外观等进行评分。在这个项目中,葡萄酒的品尝笔记将被用作特征,而品酒师给出的分数则是目标变量,模型的任务是找出两者之间的关系,并对新的品尝笔记进行分数预测。 在机器学习中,通常会使用多种算法来构建预测模型,如线性回归、决策树、随机森林、梯度提升机等。在wine_reviewer项目中,可能会尝试多种算法,并通过交叉验证等技术来评估模型的性能,最终选择最适合这个任务的模型。 对于这个项目来说,数据集的质量和特征工程将直接影响模型的准确性和可靠性。在准备数据时,可能需要进行数据清洗、缺失值处理、文本规范化、特征选择等步骤。数据集中的标签(目标变量)即为葡萄酒的评分,而特征则来自于品酒师的品尝笔记。 项目还提到了“kaggle”和“R”,这两个都是数据分析和机器学习领域中常见的元素。Kaggle是一个全球性的数据科学竞赛平台,提供各种机器学习挑战和数据集,吸引了来自全球的数据科学家和机器学习专家。通过参与Kaggle竞赛,可以提升个人技能,并有机会接触到最新的机器学习技术和数据处理方法。R是一种用于统计计算和图形的编程语言和软件环境,它在统计分析、数据挖掘、机器学习等领域有广泛的应用。使用R语言可以帮助研究人员进行数据处理、统计分析和模型建立。 至于“压缩包子文件的文件名称列表”,这里可能存在误解或打字错误。通常,这类名称应该表示存储项目相关文件的压缩包,例如“wine_reviewer-master.zip”。这个压缩包可能包含了项目的源代码、数据集、文档和其它相关资源。在开始项目前,研究人员需要解压这个文件包,并且仔细阅读项目文档,以便了解项目的具体要求和数据格式。 总之,wine_reviewer项目是一个结合了机器学习、数据处理和葡萄酒品鉴的有趣尝试,它不仅展示了机器学习在实际生活中的应用潜力,也为研究者提供了丰富的学习资源和实践机会。通过这种跨领域的合作,可以为葡萄酒行业带来更客观、一致的评价标准,并帮助消费者做出更加明智的选择。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【单相整流器终极指南】:电气工程师的20年实用技巧大揭秘

![【单相整流器终极指南】:电气工程师的20年实用技巧大揭秘](https://www.kemet.com/content/dam/kemet/lightning/images/ec-content/2020/08/Figure-1-film-filtering-solution-diagram.jpg) # 摘要 单相整流器是电力电子技术中应用广泛的设备,用于将交流电转换为直流电。本文首先介绍了单相整流器的基础知识和工作原理,分析了其设计要点,性能评估方法以及在电力系统和电子设备中的应用。接着,探讨了单相整流器的进阶应用和优化策略,包括提高效率和数字化改造。文章还通过具体案例分析,展示了单
recommend-type

OxyPlot CategoryAxis

在OxyPlot中,CategoryAxis用于创建一个基于类别标签的轴,通常用于折线图或柱状图,其中每个轴的值代表不同的类别。以下是如何在XAML中设置和使用CategoryAxis的一个简单示例: ```xml <!-- 在你的XAML文件中 --> <oxy:CartesianChart x:Name="chart"> <oxy:CartesianChart.Axes> <oxy:CategoryAxis Title="Category" Position="Bottom"> <!-- 可以在这里添加类别标签 -->