def calculate_snr(image1, image2): mean1, std1 = cv2.meanStdDev(image1) mean2, std2 = cv2.meanStdDev(image2) signal_power = (mean1 - mean2) ** 2 noise_power = np.mean((image1 - image2) ** 2) snr = 10 * math.log10(signal_power / noise_power) return snr
时间: 2024-04-25 19:26:31 浏览: 131
使用python和cv2进行图像拼接并计算PSNR
这是一个用于计算两幅图像的信噪比(SNR)的函数。
输入参数 `image1` 和 `image2` 分别为两幅图像,函数会计算它们的均值和标准差,然后根据公式计算信号功率和噪声功率,最后返回它们的信噪比值。
具体来说,函数首先调用 `cv2.meanStdDev()` 函数计算两幅图像的均值和标准差。然后,函数根据公式计算信号功率和噪声功率。其中,信号功率的计算使用了两幅图像的均值之差的平方,而噪声功率的计算使用了两幅图像像素值差的平均值。最后,函数返回信噪比的值。
需要注意的是,此函数中的信噪比计算是基于像素值的,因此对于不同的图像,计算出来的信噪比值可能会有所不同。
阅读全文