def predict(self, future_days=10): dataSetPast = self.dataset[-self.n_past: ] dataSetFuture = np.zeros((future_days, 2)) startDay = dataSetPast[-1][0]+1 dataSetFuture[:, 0] = np.arange(startDay, startDay+future_days) dataSetFull = np.concatenate((dataSetPast, dataSetFuture), axis=0) all_data = [] time_step = self.n_past for i in range(time_step, len(dataSetFull)): data_x = [] data_x.append( dataSetFull[i - time_step:i, :]) data_x = np.array(data_x) prediction = self.LSTModel.predict(data_x) all_data.append(prediction) dataSetFull[i, 1] = prediction

时间: 2023-06-26 10:06:50 浏览: 209
这是一个用于预测未来天数股票价格的函数。它的输入参数是未来的天数,即需要预测的天数。函数首先根据历史数据(self.dataset)取出最近的self.n_past个数据点(默认为10个),然后构造一个大小为(future_days, 2)的全零数组(dataSetFuture),并设置未来天数的日期。将历史数据和未来数据合并成一个完整的数据集(dataSetFull)。接下来,将数据集划分为大小为self.n_past的时间步长,然后对于每个时间步长,将其作为输入数据,使用LSTModel模型进行预测,并将预测结果添加到all_data列表中。最后,将预测结果更新到dataSetFull中,并返回预测结果。
相关问题

def train(self, X, y): num_samples, num_features = X.shape # 初始化权重和偏置 self.weights = np.zeros(num_features) self.bias = 0 for _ in range(self.num_iterations): linear_model = np.dot(X, self.weights) + self.bias y_pred = self.sigmoid(linear_model) # 计算梯度 dw = (1 / num_samples) * np.dot(X.T, (y_pred - y)) db = (1 / num_samples) * np.sum(y_pred - y) # 添加正则化项 if self.regularization == 'l1': dw += (self.reg_strength / num_samples) * np.sign(self.weights) elif self.regularization == 'l2': dw += (self.reg_strength / num_samples) * self.weights # 更新权重和偏置 self.weights -= self.learning_rate * dw self.bias -= self.learning_rate * db def predict(self, X): linear_model = np.dot(X, self.weights) + self.bias y_pred = self.sigmoid(linear_model) y_pred_cls = np.where(y_pred >= 0.5, 1, 0) return y_pred_cls def sigmoid(self, x): return 1 / (1 + np.exp(-x)) 的含义

这段代码是一个二分类的逻辑回归模型的训练和预测过程。其中train函数用于训练模型,输入的X是一个n*m的矩阵,其中n是样本数,m是特征数;y是一个长度为n的向量,表示每个样本的标签;num_iterations表示迭代次数;regularization表示正则化方式,可以是'l1'或'l2';reg_strength表示正则化项的强度;learning_rate表示学习率。predict函数用于对新的样本进行预测,输入的X是一个n*m的矩阵,输出的y_pred_cls是一个长度为n的向量,表示每个样本的预测标签。sigmoid函数是逻辑回归中常用的激活函数,用于将线性模型的输出映射到0到1之间的概率值。在训练过程中,先通过线性模型计算出每个样本属于正例的概率,然后通过梯度下降更新权重和偏置,使得损失函数最小化。在更新权重和偏置时,如果使用了正则化,就需要加上正则化项。

逐句解释一下import numpy as npclass Perceptron: def __init__(self, num_classes, input_size, lr=0.1, epochs=1000): self.num_classes = num_classes self.input_size = input_size self.lr = lr self.epochs = epochs self.weights = np.zeros((num_classes, input_size)) self.biases = np.zeros(num_classes) def train(self, X, y): for epoch in range(self.epochs): for i in range(X.shape[0]): x = X[i] target = y[i] output = self.predict(x) if output != target: self.weights[target] += self.lr * x self.biases[target] += self.lr self.weights[output] -= self.lr * x self.biases[output] -= self.lr def predict(self, x): scores = np.dot(self.weights, x) + self.biases return np.argmax(scores)if __name__ == '__main__': X = np.array([[1, 1], [2, 1], [2, 3], [3, 2]]) y = np.array([0, 0, 1, 1]) num_classes = 2 input_size = 2 perceptron = Perceptron(num_classes, input_size) perceptron.train(X, y) print(perceptron.predict(np.array([1, 2])))

1. `import numpy as np`:导入NumPy库并将其命名为`np`,使得在代码中使用NumPy函数和数组时可以更方便地调用。 2. `class Perceptron:`:定义一个名为`Perceptron`的类。 3. `def __init__(self, num_classes, input_size, lr=0.1, epochs=1000):`:定义一个名为`__init__`的方法,用于初始化`Perceptron`类的实例。该方法包含四个参数:`num_classes`表示分类数目,`input_size`表示每个输入样本的特征数,`lr`表示学习率(默认值为0.1),`epochs`表示训练次数(默认值为1000)。 4. `self.num_classes = num_classes`:将传入的`num_classes`参数赋值给`Perceptron`类的实例变量`num_classes`。 5. `self.input_size = input_size`:将传入的`input_size`参数赋值给`Perceptron`类的实例变量`input_size`。 6. `self.lr = lr`:将传入的`lr`参数赋值给`Perceptron`类的实例变量`lr`。 7. `self.epochs = epochs`:将传入的`epochs`参数赋值给`Perceptron`类的实例变量`epochs`。 8. `self.weights = np.zeros((num_classes, input_size))`:将一个大小为`(num_classes, input_size)`的全零数组赋值给`Perceptron`类的实例变量`weights`,用于存储神经元的权重。 9. `self.biases = np.zeros(num_classes)`:将一个大小为`num_classes`的全零数组赋值给`Perceptron`类的实例变量`biases`,用于存储神经元的偏置。 10. `def train(self, X, y):`:定义一个名为`train`的方法,用于训练神经元模型。该方法包含两个参数:`X`表示输入样本的特征矩阵,`y`表示输入样本的标签向量。 11. `for epoch in range(self.epochs):`:使用`for`循环,遍历所有训练次数。 12. `for i in range(X.shape[0]):`:使用`for`循环,遍历所有输入样本。 13. `x = X[i]`:将当前输入样本的特征向量赋值给变量`x`。 14. `target = y[i]`:将当前输入样本的标签赋值给变量`target`。 15. `output = self.predict(x)`:调用`predict`方法,根据当前输入样本的特征向量预测输出标签,并将结果赋值给变量`output`。 16. `if output != target:`:如果预测输出标签与实际标签不同: 17. `self.weights[target] += self.lr * x`:将目标类别的权重向量加上当前输入样本的特征向量与学习率的乘积。 18. `self.biases[target] += self.lr`:将目标类别的偏置加上学习率。 19. `self.weights[output] -= self.lr * x`:将输出类别的权重向量减去当前输入样本的特征向量与学习率的乘积。 20. `self.biases[output] -= self.lr`:将输出类别的偏置减去学习率。 21. `def predict(self, x):`:定义一个名为`predict`的方法,用于根据输入样本的特征向量预测输出标签。该方法包含一个参数`x`,表示输入样本的特征向量。 22. `scores = np.dot(self.weights, x) + self.biases`:将权重向量与输入样本的特征向量做点积,再加上偏置向量,得到一个分数向量。该分数向量包含每个类别的分数。 23. `return np.argmax(scores)`:返回分数向量中分数最高的类别的索引,即为预测输出标签。 24. `if __name__ == '__main__':`:检查当前模块是否为主模块。 25. `X = np.array([[1, 1], [2, 1], [2, 3], [3, 2]])`:定义一个大小为`(4, 2)`的NumPy数组,包含四个输入样本的特征向量。 26. `y = np.array([0, 0, 1, 1])`:定义一个大小为`(4,)`的NumPy数组,包含四个输入样本的标签。 27. `num_classes = 2`:定义变量`num_classes`,表示分类数目为2。 28. `input_size = 2`:定义变量`input_size`,表示每个输入样本的特征数为2。 29. `perceptron = Perceptron(num_classes, input_size)`:创建一个`Perceptron`类的实例`perceptron`,传入分类数目和每个输入样本的特征数。 30. `perceptron.train(X, y)`:调用`train`方法,训练神经元模型。 31. `print(perceptron.predict(np.array([1, 2])))`:创建一个大小为`(2,)`的NumPy数组作为输入样本的特征向量,调用`predict`方法,预测输出标签,并将结果打印出来。
阅读全文

相关推荐

import numpy as np from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt # 加载 iris 数据 iris = load_iris() # 只选取两个特征和两个类别进行二分类 X = iris.data[(iris.target==0)|(iris.target==1), :2] y = iris.target[(iris.target==0)|(iris.target==1)] # 将标签转化为 0 和 1 y[y==0] = -1 # 将数据集分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 实现逻辑回归算法 class LogisticRegression: def __init__(self, lr=0.01, num_iter=100000, fit_intercept=True, verbose=False): self.lr = lr self.num_iter = num_iter self.fit_intercept = fit_intercept self.verbose = verbose def __add_intercept(self, X): intercept = np.ones((X.shape[0], 1)) return np.concatenate((intercept, X), axis=1) def __sigmoid(self, z): return 1 / (1 + np.exp(-z)) def __loss(self, h, y): return (-y * np.log(h) - (1 - y) * np.log(1 - h)).mean() def fit(self, X, y): if self.fit_intercept: X = self.__add_intercept(X) # 初始化参数 self.theta = np.zeros(X.shape[1]) for i in range(self.num_iter): # 计算梯度 z = np.dot(X, self.theta) h = self.__sigmoid(z) gradient = np.dot(X.T, (h - y)) / y.size # 更新参数 self.theta -= self.lr * gradient # 打印损失函数 if self.verbose and i % 10000 == 0: z = np.dot(X, self.theta) h = self.__sigmoid(z) loss = self.__loss(h, y) print(f"Loss: {loss} \t") def predict_prob(self, X): if self.fit_intercept: X = self.__add_intercept(X) return self.__sigmoid(np.dot(X, self.theta)) def predict(self, X, threshold=0.5): return self.predict_prob(X) >= threshold # 训练模型 model = LogisticRegressio

帮我为下面的代码加上注释:class SimpleDeepForest: def __init__(self, n_layers): self.n_layers = n_layers self.forest_layers = [] def fit(self, X, y): X_train = X for _ in range(self.n_layers): clf = RandomForestClassifier() clf.fit(X_train, y) self.forest_layers.append(clf) X_train = np.concatenate((X_train, clf.predict_proba(X_train)), axis=1) return self def predict(self, X): X_test = X for i in range(self.n_layers): X_test = np.concatenate((X_test, self.forest_layers[i].predict_proba(X_test)), axis=1) return self.forest_layers[-1].predict(X_test[:, :-2]) # 1. 提取序列特征(如:GC-content、序列长度等) def extract_features(fasta_file): features = [] for record in SeqIO.parse(fasta_file, "fasta"): seq = record.seq gc_content = (seq.count("G") + seq.count("C")) / len(seq) seq_len = len(seq) features.append([gc_content, seq_len]) return np.array(features) # 2. 读取相互作用数据并创建数据集 def create_dataset(rna_features, protein_features, label_file): labels = pd.read_csv(label_file, index_col=0) X = [] y = [] for i in range(labels.shape[0]): for j in range(labels.shape[1]): X.append(np.concatenate([rna_features[i], protein_features[j]])) y.append(labels.iloc[i, j]) return np.array(X), np.array(y) # 3. 调用SimpleDeepForest分类器 def optimize_deepforest(X, y): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) model = SimpleDeepForest(n_layers=3) model.fit(X_train, y_train) y_pred = model.predict(X_test) print(classification_report(y_test, y_pred)) # 4. 主函数 def main(): rna_fasta = "RNA.fasta" protein_fasta = "pro.fasta" label_file = "label.csv" rna_features = extract_features(rna_fasta) protein_features = extract_features(protein_fasta) X, y = create_dataset(rna_features, protein_features, label_file) optimize_deepforest(X, y) if __name__ == "__main__": main()

import numpy as np class BPNeuralNetwork: def __init__(self, input_size, hidden_size, output_size): self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.weights1 = np.random.randn(self.input_size, self.hidden_size) self.bias1 = np.zeros((1, self.hidden_size)) self.weights2 = np.random.randn(self.hidden_size, self.output_size) self.bias2 = np.zeros((1, self.output_size)) def forward(self, X): self.hidden_layer = np.dot(X, self.weights1) + self.bias1 self.activated_hidden_layer = self.sigmoid(self.hidden_layer) self.output_layer = np.dot(self.activated_hidden_layer, self.weights2) + self.bias2 self.activated_output_layer = self.sigmoid(self.output_layer) return self.activated_output_layer def sigmoid(self, s): return 1 / (1 + np.exp(-s)) def sigmoid_derivative(self, s): return s * (1 - s) def backward(self, X, y, o, learning_rate): self.error = y - o self.delta_output = self.error * self.sigmoid_derivative(o) self.error_hidden = self.delta_output.dot(self.weights2.T) self.delta_hidden = self.error_hidden * self.sigmoid_derivative(self.activated_hidden_layer) self.weights1 += X.T.dot(self.delta_hidden) * learning_rate self.bias1 += np.sum(self.delta_hidden, axis=0, keepdims=True) * learning_rate self.weights2 += self.activated_hidden_layer.T.dot(self.delta_output) * learning_rate self.bias2 += np.sum(self.delta_output, axis=0, keepdims=True) * learning_rate def train(self, X, y, learning_rate, epochs): for epoch in range(epochs): output = self.forward(X) self.backward(X, y, output, learning_rate) def predict(self, X): return self.forward(X) X = np.array([[0, 0, 1], [0, 1, 1], [1, 0, 1], [1, 1, 1]]) y = np.array([[0], [1], [1], [0]]) nn = BPNeuralNetwork(3, 4, 1) nn.train(X, y, 0.1, 10000) new_data = np.array([[0, 0, 0], [0, 1, 0], [1, 0, 0], [1, 1, 0]]) print(nn.predict(new_data))

下面的这段python代码,哪里有错误,修改一下:import numpy as np import matplotlib.pyplot as plt import pandas as pd import torch import torch.nn as nn from torch.autograd import Variable from sklearn.preprocessing import MinMaxScaler training_set = pd.read_csv('CX2-36_1971.csv') training_set = training_set.iloc[:, 1:2].values def sliding_windows(data, seq_length): x = [] y = [] for i in range(len(data) - seq_length): _x = data[i:(i + seq_length)] _y = data[i + seq_length] x.append(_x) y.append(_y) return np.array(x), np.array(y) sc = MinMaxScaler() training_data = sc.fit_transform(training_set) seq_length = 1 x, y = sliding_windows(training_data, seq_length) train_size = int(len(y) * 0.8) test_size = len(y) - train_size dataX = Variable(torch.Tensor(np.array(x))) dataY = Variable(torch.Tensor(np.array(y))) trainX = Variable(torch.Tensor(np.array(x[1:train_size]))) trainY = Variable(torch.Tensor(np.array(y[1:train_size]))) testX = Variable(torch.Tensor(np.array(x[train_size:len(x)]))) testY = Variable(torch.Tensor(np.array(y[train_size:len(y)]))) class LSTM(nn.Module): def __init__(self, num_classes, input_size, hidden_size, num_layers): super(LSTM, self).__init__() self.num_classes = num_classes self.num_layers = num_layers self.input_size = input_size self.hidden_size = hidden_size self.seq_length = seq_length self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, num_classes) def forward(self, x): h_0 = Variable(torch.zeros( self.num_layers, x.size(0), self.hidden_size)) c_0 = Variable(torch.zeros( self.num_layers, x.size(0), self.hidden_size)) # Propagate input through LSTM ula, (h_out, _) = self.lstm(x, (h_0, c_0)) h_out = h_out.view(-1, self.hidden_size) out = self.fc(h_out) return out num_epochs = 2000 learning_rate = 0.001 input_size = 1 hidden_size = 2 num_layers = 1 num_classes = 1 lstm = LSTM(num_classes, input_size, hidden_size, num_layers) criterion = torch.nn.MSELoss() # mean-squared error for regression optimizer = torch.optim.Adam(lstm.parameters(), lr=learning_rate) # optimizer = torch.optim.SGD(lstm.parameters(), lr=learning_rate) runn = 10 Y_predict = np.zeros((runn, len(dataY))) # Train the model for i in range(runn): print('Run: ' + str(i + 1)) for epoch in range(num_epochs): outputs = lstm(trainX) optimizer.zero_grad() # obtain the loss function loss = criterion(outputs, trainY) loss.backward() optimizer.step() if epoch % 100 == 0: print("Epoch: %d, loss: %1.5f" % (epoch, loss.item())) lstm.eval() train_predict = lstm(dataX) data_predict = train_predict.data.numpy() dataY_plot = dataY.data.numpy() data_predict = sc.inverse_transform(data_predict) dataY_plot = sc.inverse_transform(dataY_plot) Y_predict[i,:] = np.transpose(np.array(data_predict)) Y_Predict = np.mean(np.array(Y_predict)) Y_Predict_T = np.transpose(np.array(Y_Predict))

import numpy import numpy as np import matplotlib.pyplot as plt import math import torch from torch import nn from torch.utils.data import DataLoader, Dataset import os os.environ['KMP_DUPLICATE_LIB_OK']='True' dataset = [] for data in np.arange(0, 3, .01): data = math.sin(data * math.pi) dataset.append(data) dataset = np.array(dataset) dataset = dataset.astype('float32') max_value = np.max(dataset) min_value = np.min(dataset) scalar = max_value - min_value print(scalar) dataset = list(map(lambda x: x / scalar, dataset)) def create_dataset(dataset, look_back=3): dataX, dataY = [], [] for i in range(len(dataset) - look_back): a = dataset[i:(i + look_back)] dataX.append(a) dataY.append(dataset[i + look_back]) return np.array(dataX), np.array(dataY) data_X, data_Y = create_dataset(dataset) train_X, train_Y = data_X[:int(0.8 * len(data_X))], data_Y[:int(0.8 * len(data_Y))] test_X, test_Y = data_Y[int(0.8 * len(data_X)):], data_Y[int(0.8 * len(data_Y)):] train_X = train_X.reshape(-1, 1, 3).astype('float32') train_Y = train_Y.reshape(-1, 1, 3).astype('float32') test_X = test_X.reshape(-1, 1, 3).astype('float32') train_X = torch.from_numpy(train_X) train_Y = torch.from_numpy(train_Y) test_X = torch.from_numpy(test_X) class RNN(nn.Module): def __init__(self, input_size, hidden_size, output_size=1, num_layer=2): super(RNN, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.num_layer = num_layer self.rnn = nn.RNN(input_size, hidden_size, batch_first=True) self.linear = nn.Linear(hidden_size, output_size) def forward(self, x): out, h = self.rnn(x) out = self.linear(out[0]) return out net = RNN(3, 20) criterion = nn.MSELoss(reduction='mean') optimizer = torch.optim.Adam(net.parameters(), lr=1e-2) train_loss = [] test_loss = [] for e in range(1000): pred = net(train_X) loss = criterion(pred, train_Y) optimizer.zero_grad() # 反向传播 loss.backward() optimizer.step() if (e + 1) % 100 == 0: print('Epoch:{},loss:{:.10f}'.format(e + 1, loss.data.item())) train_loss.append(loss.item()) plt.plot(train_loss, label='train_loss') plt.legend() plt.show()请适当修改代码,并写出预测值和真实值的代码

import numpy as np import matplotlib.pyplot as plt import math import torch from torch import nn import pdb from torch.autograd import Variable import os os.environ['KMP_DUPLICATE_LIB_OK']='True' dataset = [] for data in np.arange(0, 3, .01): data = math.sin(data * math.pi) dataset.append(data) dataset = np.array(dataset) dataset = dataset.astype('float32') max_value = np.max(dataset) min_value = np.min(dataset) scalar = max_value - min_value dataset = list(map(lambda x: x / scalar, dataset)) def create_dataset(dataset, look_back=3): dataX, dataY = [], [] for i in range(len(dataset) - look_back): a = dataset[i:(i + look_back)] dataX.append(a) dataY.append(dataset[i + look_back]) return np.array(dataX), np.array(dataY) data_X, data_Y = create_dataset(dataset) # 对训练集测试集划分,划分比例0.8 train_X, train_Y = data_X[:int(0.8 * len(data_X))], data_Y[:int(0.8 * len(data_Y))] test_X, test_Y = data_Y[int(0.8 * len(data_X)):], data_Y[int(0.8 * len(data_Y)):] train_X = train_X.reshape(-1, 1, 3).astype('float32') train_Y = train_Y.reshape(-1, 1, 3).astype('float32') test_X = test_X.reshape(-1, 1, 3).astype('float32') class RNN(nn.Module): def __init__(self, input_size, hidden_size, output_size=1, num_layer=2): super(RNN, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.num_layer = num_layer self.rnn = nn.RNN(input_size, hidden_size, batch_first=True) self.linear = nn.Linear(hidden_size, output_size) def forward(self, x): # 补充forward函数 out, h = self.rnn(x) out = self.linear(out[0]) # print("output的形状", out.shape) return out net = RNN(3, 20) criterion = nn.MSELoss(reduction='mean') optimizer = torch.optim.Adam(net.parameters(), lr=1e-2) train_loss = [] test_loss = [] for e in range(1000): pred = net(train_X) loss = criterion(pred, train_Y) optimizer.zero_grad() # 反向传播 loss.backward() optimizer.step() if (e + 1) % 100 == 0: print('Epoch:{},loss:{:.10f}'.format(e + 1, loss.data.item())) train_loss.append(loss.item()) plt.plot(train_loss, label='train_loss') plt.legend() plt.show()画出预测值真实值图

import numpy as np from sklearn import datasets from sklearn.linear_model import LinearRegression np.random.seed(10) class Newton(object): def init(self,epochs=50): self.W = None self.epochs = epochs def get_loss(self, X, y, W,b): """ 计算损失 0.5sum(y_pred-y)^2 input: X(2 dim np.array):特征 y(1 dim np.array):标签 W(2 dim np.array):线性回归模型权重矩阵 output:损失函数值 """ #print(np.dot(X,W)) loss = 0.5np.sum((y - np.dot(X,W)-b)2) return loss def first_derivative(self,X,y): """ 计算一阶导数g = (y_pred - y)*x input: X(2 dim np.array):特征 y(1 dim np.array):标签 W(2 dim np.array):线性回归模型权重矩阵 output:损失函数值 """ y_pred = np.dot(X,self.W) + self.b g = np.dot(X.T, np.array(y_pred - y)) g_b = np.mean(y_pred-y) return g,g_b def second_derivative(self,X,y): """ 计算二阶导数 Hij = sum(X.T[i]X.T[j]) input: X(2 dim np.array):特征 y(1 dim np.array):标签 output:损失函数值 """ H = np.zeros(shape=(X.shape[1],X.shape[1])) H = np.dot(X.T, X) H_b = 1 return H, H_b def fit(self, X, y): """ 线性回归 y = WX + b拟合,牛顿法求解 input: X(2 dim np.array):特征 y(1 dim np.array):标签 output:拟合的线性回归 """ self.W = np.random.normal(size=(X.shape[1])) self.b = 0 for epoch in range(self.epochs): g,g_b = self.first_derivative(X,y) # 一阶导数 H,H_b = self.second_derivative(X,y) # 二阶导数 self.W = self.W - np.dot(np.linalg.pinv(H),g) self.b = self.b - 1/H_bg_b print("itration:{} ".format(epoch), "loss:{:.4f}".format( self.get_loss(X, y , self.W,self.b))) def predict(): """ 需要自己实现的代码 """ pass def normalize(x): return (x - np.min(x))/(np.max(x) - np.min(x)) if name == "main": np.random.seed(2) X = np.random.rand(100,5) y = np.sum(X3 + X**2,axis=1) print(X.shape, y.shape) # 归一化 X_norm = normalize(X) X_train = X_norm[:int(len(X_norm)*0.8)] X_test = X_norm[int(len(X_norm)*0.8):] y_train = y[:int(len(X_norm)0.8)] y_test = y[int(len(X_norm)0.8):] # 牛顿法求解回归问题 newton=Newton() newton.fit(X_train, y_train) y_pred = newton.predict(X_test,y_test) print(0.5np.sum((y_test - y_pred)**2)) reg = LinearRegression().fit(X_train, y_train) y_pred = reg.predict(X_test) print(0.5np.sum((y_test - y_pred)**2)) ——修改代码中的问题,并补全缺失的代码,实现牛顿最优化算法

翻译这段代码class GPR: def __init__(self, optimize=True): self.is_fit = False self.train_X, self.train_y = None, None self.params = {"l": 2, "sigma_f": 1} self.optimize = optimize def fit(self, X, y): # store train data self.train_X = np.asarray(X) self.train_y = np.asarray(y) # hyper parameters optimization def negative_log_likelihood_loss(params): self.params["l"], self.params["sigma_f"] = params[0], params[1] Kyy = self.kernel(self.train_X, self.train_X) + 1e-8 * np.eye(len(self.train_X)) loss = 0.5 * self.train_y.T.dot(np.linalg.inv(Kyy)).dot(self.train_y) + 0.5 * np.linalg.slogdet(Kyy)[ 1] + 0.5 * len(self.train_X) * np.log(2 * np.pi) return loss.ravel() if self.optimize: res = minimize(negative_log_likelihood_loss, [self.params["l"], self.params["sigma_f"]],bounds=((1e-4, 1e4), (1e-4, 1e4)),method='L-BFGS-B') self.params["l"], self.params["sigma_f"] = res.x[0], res.x[1] self.is_fit = True def predict(self, X): if not self.is_fit: print("GPR Model not fit yet.") return X = np.asarray(X) Kff = self.kernel(self.train_X, self.train_X) # (N, N) Kyy = self.kernel(X, X) # (k, k) Kfy = self.kernel(self.train_X, X) # (N, k) Kff_inv = np.linalg.inv(Kff + 0.5e-3 * np.eye(len(self.train_X))) # (N, N) mu = Kfy.T.dot(Kff_inv).dot(self.train_y) cov = Kyy - Kfy.T.dot(Kff_inv).dot(Kfy) return mu, cov def kernel(self, x1, x2): dist_matrix = np.sum(x1 ** 2, 1).reshape(-1, 1) + np.sum(x2 ** 2, 1) - 2 * np.dot(x1, x2.T) return self.params["sigma_f"] ** 2 * np.exp(-0.5 / self.params["l"] ** 2 * dist_matrix)

大家在看

recommend-type

【答题卡识别】 Hough变换答题卡识别【含Matlab源码 250期】.zip

Matlab领域上传的代码均可运行,亲测可用,直接替换数据即可,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 图像识别:表盘识别、车道线识别、车牌识别、答题卡识别、电器识别、跌倒检测、动物识别、发票识别、服装识别、汉字识别、红绿灯识别、火灾检测、疾病分类、交通标志牌识别、口罩识别、裂缝识别、目标跟踪、疲劳检测、身份证识别、人民币识别、数字字母识别、手势识别、树叶识别、水果分级、条形码识别、瑕疵检测、芯片识别、指纹识别
recommend-type

Solar-Wind-Hybrid-Power-plant_matlab_

hybrid solar wind farm using matlab
recommend-type

OZ9350 设计规格书

OZ9350 设计规格书
recommend-type

看nova-scheduler如何选择计算节点-每天5分钟玩转OpenStack

本节重点介绍nova-scheduler的调度机制和实现方法:即解决如何选择在哪个计算节点上启动instance的问题。创建Instance时,用户会提出资源需求,例如CPU、内存、磁盘各需要多少。OpenStack将这些需求定义在flavor中,用户只需要指定用哪个flavor就可以了。可用的flavor在System->Flavors中管理。Flavor主要定义了VCPU,RAM,DISK和Metadata这四类。nova-scheduler会按照flavor去选择合适的计算节点。VCPU,RAM,DISK比较好理解,而Metatdata比较有意思,我们后面会具体讨论。下面介绍nova-s
recommend-type

机器视觉选型计算概述-不错的总结

机器视觉选型计算概述-不错的总结

最新推荐

recommend-type

(179722824)三相异步电机矢量控制仿真模型

三相异步电机矢量控制仿真模型。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

一次并发导致错误分析与总结

一次并发导致错误分析
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

传感器集成全攻略:ICM-42688-P运动设备应用详解

![传感器集成全攻略:ICM-42688-P运动设备应用详解](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-ba33fcfbde1d1207d7b8fe45b6ea58d0.png) # 摘要 ICM-42688-P传感器作为一种先进的惯性测量单元,广泛应用于多种运动设备中。本文首先介绍了ICM-42688-P传感器的基本概述和技术规格,然后深入探讨了其编程基础,包括软件接口、数据读取处理及校准测试。接着,本文详细分析了该传感器在嵌入式系统、运动控制和人机交互设备中的实践应用,并且探讨了高级功能开发,
recommend-type

matlab 中实现 astar

在MATLAB中,A*算法是一种用于求解最短路径问题的启发式搜索算法。它适用于带权重的图或网格,特别是当有大量潜在解决方案时,比如迷宫寻路问题。以下是使用MATLAB基本步骤来实现A*算法: 1. **数据结构准备**: - 创建一个二维数组表示地图,其中0代表可以通行的节点,其他值代表障碍物或边界。 - 定义一个队列(通常使用`prioritiesqueue`)来存储待探索的节点及其信息。 2. **初始化**: - 设定起始节点(start),目标节点(goal),以及每个节点的初始g值(从起点到该点的实际代价)和f值(g值加上估计的h值,即启发函数)。 3.