nn.AdaptiveAvgPool2d(1), nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0), nn.BatchNorm2d(inter_channels), nn.ReLU(inplace=True), nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0), nn.BatchNorm2d(channels),zuoyong
时间: 2023-05-20 10:03:54 浏览: 81
这是一个神经网络模型的定义,包括自适应平均池化层、卷积层、批量归一化层和激活函数。其中,自适应平均池化层将输入的二维张量转换为一个标量,卷积层和批量归一化层用于提取特征,激活函数则用于增强模型的非线性表达能力。至于具体的实现细节,需要根据具体的场景和需求进行调整。
相关问题
基于300条数据用CNN多分类预测时,训练精度特别差,代码如下class Model(Module): def __init__(self): super(Model, self).__init__() self.conv1_1 = nn.Conv2d(in_channels=3,out_channels=64,kernel_size=(3,3),padding=1) self.bn1_1 = nn.BatchNorm2d(64) self.relu1_1 = nn.ReLU() self.pool1 = nn.MaxPool2d(kernel_size=4, stride=4) self.conv2_1 = nn.Conv2d(in_channels=64,out_channels=128,kernel_size=(3,3),padding=1) self.bn2_1 = nn.BatchNorm2d(128) self.relu2_1 = nn.ReLU() self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv3_1 = nn.Conv2d(in_channels=128,out_channels=256,kernel_size=(3,3),padding=1) self.bn3_1 = nn.BatchNorm2d(256) self.relu3_1 = nn.ReLU() self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv4_1 = nn.Conv2d(in_channels=256,out_channels=512,kernel_size=(3,3)) self.bn4_1 = nn.BatchNorm2d(512) self.relu4_1 = nn.ReLU() self.conv4_2 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn4_2 = nn.BatchNorm2d(512) self.relu4_2 = nn.ReLU() self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv5_1 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn5_1 = nn.BatchNorm2d(512) self.relu5_1 = nn.ReLU() self.conv5_2 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn5_2 = nn.BatchNorm2d(512) self.relu5_2 = nn.ReLU() self.pool5 = nn.AdaptiveAvgPool2d(5) self.dropout1 = nn.Dropout(p=0.3) self.fc1=nn.Linear(512*5*5,512) self.relu6=nn.ReLU() self.dropout2 = nn.Dropout(p=0.2) self.fc2=nn.Linear(512,141) ,具体如何修改代码
训练精度差可能是由于数据集太小,或者模型的训练过程不够充分。可以尝试以下几个方法:
1. 增加数据集:可以通过数据增强的方法来扩充数据集,比如随机裁剪、翻转、旋转等等。
2. 调整超参数:可以尝试调整学习率、优化器、dropout等超参数来提高模型的性能。
3. 调整网络结构:可以尝试增加卷积层、全连接层,或者使用更深的网络结构来提高模型的性能。
以下是代码的修改建议:
1. 增加数据增强:可以使用 torchvision.transforms 对图像进行随机裁剪、翻转等操作,来扩充数据集。
2. 调整学习率和优化器:可以尝试使用较小的学习率,并选择合适的优化器,比如 Adam。
3. 增加全连接层:可以在模型中增加一个全连接层来提高模型性能。
4. 增加正则化:可以使用 L2 正则化来防止过拟合。
修改后的代码如下:
```
import torch.nn.functional as F
import torchvision.transforms as transforms
class Model(Module):
def __init__(self):
super(Model, self).__init__()
self.conv1_1 = nn.Conv2d(in_channels=3,out_channels=64,kernel_size=(3,3),padding=1)
self.bn1_1 = nn.BatchNorm2d(64)
self.relu1_1 = nn.ReLU()
self.pool1 = nn.MaxPool2d(kernel_size=4, stride=4)
self.conv2_1 = nn.Conv2d(in_channels=64,out_channels=128,kernel_size=(3,3),padding=1)
self.bn2_1 = nn.BatchNorm2d(128)
self.relu2_1 = nn.ReLU()
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv3_1 = nn.Conv2d(in_channels=128,out_channels=256,kernel_size=(3,3),padding=1)
self.bn3_1 = nn.BatchNorm2d(256)
self.relu3_1 = nn.ReLU()
self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv4_1 = nn.Conv2d(in_channels=256,out_channels=512,kernel_size=(3,3))
self.bn4_1 = nn.BatchNorm2d(512)
self.relu4_1 = nn.ReLU()
self.conv4_2 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3))
self.bn4_2 = nn.BatchNorm2d(512)
self.relu4_2 = nn.ReLU()
self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv5_1 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3))
self.bn5_1 = nn.BatchNorm2d(512)
self.relu5_1 = nn.ReLU()
self.conv5_2 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3))
self.bn5_2 = nn.BatchNorm2d(512)
self.relu5_2 = nn.ReLU()
self.pool5 = nn.AdaptiveAvgPool2d(5)
self.dropout1 = nn.Dropout(p=0.3)
self.fc1=nn.Linear(512*5*5, 1024)
self.relu6=nn.ReLU()
self.dropout2 = nn.Dropout(p=0.2)
self.fc2=nn.Linear(1024, 141)
# 数据增强
self.transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
def forward(self, x):
x = self.conv1_1(x)
x = self.bn1_1(x)
x = self.relu1_1(x)
x = self.pool1(x)
x = self.conv2_1(x)
x = self.bn2_1(x)
x = self.relu2_1(x)
x = self.pool2(x)
x = self.conv3_1(x)
x = self.bn3_1(x)
x = self.relu3_1(x)
x = self.pool3(x)
x = self.conv4_1(x)
x = self.bn4_1(x)
x = self.relu4_1(x)
x = self.conv4_2(x)
x = self.bn4_2(x)
x = self.relu4_2(x)
x = self.pool4(x)
x = self.conv5_1(x)
x = self.bn5_1(x)
x = self.relu5_1(x)
x = self.conv5_2(x)
x = self.bn5_2(x)
x = self.relu5_2(x)
x = self.pool5(x)
x = x.view(-1, 512*5*5)
x = self.dropout1(x)
x = self.fc1(x)
x = self.relu6(x)
x = self.dropout2(x)
x = self.fc2(x)
return x
```
在训练时,可以使用如下代码来进行数据增强:
```
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=model.transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128,
shuffle=True, num_workers=2)
```
class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv1d(in_channels=1, out_channels=64, kernel_size=32, stride=8, padding=12) self.pool1 = nn.MaxPool1d(kernel_size=2, stride=2) self.BN = nn.BatchNorm1d(num_features=64) self.conv3_1 = nn.Conv1d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1) self.pool3_1 = nn.MaxPool1d(kernel_size=2, stride=2) self.conv3_2 = nn.Conv1d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1) self.pool3_2 = nn.MaxPool1d(kernel_size=2, stride=2) self.conv3_3 = nn.Conv1d(in_channels=128, out_channels=256, kernel_size=3, stride=1, padding=1) self.pool3_3 = nn.MaxPool1d(kernel_size=2, stride=2) self.conv5_1 = nn.Conv1d(in_channels=64, out_channels=64, kernel_size=5, stride=1, padding=2) self.pool5_1 = nn.MaxPool1d(kernel_size=2, stride=2) self.conv5_2 = nn.Conv1d(in_channels=64, out_channels=128, kernel_size=5, stride=1, padding=2) self.pool5_2 = nn.MaxPool1d(kernel_size=2, stride=2) self.conv5_3 = nn.Conv1d(in_channels=128, out_channels=256, kernel_size=5, stride=1, padding=2) self.pool5_3 = nn.MaxPool1d(kernel_size=2, stride=2) self.conv7_1 = nn.Conv1d(in_channels=64, out_channels=64, kernel_size=7, stride=1, padding=3) self.pool7_1 = nn.MaxPool1d(kernel_size=2, stride=2) self.conv7_2 = nn.Conv1d(in_channels=64, out_channels=128, kernel_size=7, stride=1, padding=3) self.pool7_2 = nn.MaxPool1d(kernel_size=2, stride=2) self.conv7_3 = nn.Conv1d(in_channels=128, out_channels=256, kernel_size=7, stride=1, padding=3) self.pool7_3 = nn.MaxPool1d(kernel_size=2, stride=2) self.pool2 = nn.MaxPool1d(kernel_size=8, stride=1) self.fc = nn.Linear(in_features=256 * 3, out_features=4) ##这里的256*3是计算出来的 self.softmax = nn.Softmax(),解释各部分的作用和参数选择
这段代码定义了一个名为Net的类,继承了nn.Module类。在初始化函数中,它定义了多个一维卷积层(nn.Conv1d)、最大池化层(nn.MaxPool1d)、BN层(nn.BatchNorm1d)和全连接层(nn.Linear)。这些层用于构建神经网络模型。其中,卷积层、池化层和BN层用于特征提取,全连接层用于分类。此模型的输入是一个通道的一维数据,输出是四个类别的概率分布。
阅读全文