信赖域算法matlab程序
时间: 2023-10-06 09:09:33 浏览: 75
信赖域算法是一种非线性优化算法,用于求解无约束或有约束的非线性优化问题。以下是一个使用Matlab实现的信赖域算法的简单示例程序:
```
function [x, fval, exitflag] = trustregion(fun, x0, lb, ub)
% Initialization
x = x0;
fval = fun(x);
delta = 0.1;
tol = 1e-6;
maxiter = 100;
k = 0;
while k < maxiter
% Compute gradient and Hessian
[grad, hess] = gradient_hessian(fun, x);
% Solve trust region subproblem
[p, subfval, subexitflag] = trustregionsubproblem(grad, hess, delta, lb-x, ub-x);
% Update x and fval
xnew = x + p;
fvalnew = fun(xnew);
% Update trust region radius
rho = (fval - fvalnew) / (subfval - fval);
if rho < 0.25
delta = 0.25 * delta;
elseif rho > 0.75 && abs(norm(p) - delta) < tol
delta = min(2 * delta, norm(p));
end
% Check convergence criteria
if norm(grad) < tol
exitflag = 1;
break;
elseif abs(fvalnew - fval) < tol
exitflag = 2;
break;
end
% Update x and fval
x = xnew;
fval = fvalnew;
k = k + 1;
end
if k == maxiter
exitflag = -1;
end
function [grad, hess] = gradient_hessian(fun, x)
% Compute gradient and Hessian
fval = fun(x);
grad = gradient(fun, x);
n = numel(x);
hess = zeros(n);
for i=1:n
for j=i:n
hess(i,j) = diff(diff(fun,x(i)),x(j));
hess(j,i) = hess(i,j);
end
end
function [p, subfval, subexitflag] = trustregionsubproblem(grad, hess, delta, lb, ub)
% Solve trust region subproblem
n = numel(grad);
opts = optimoptions('quadprog', 'Algorithm', 'interior-point-convex', 'Display', 'off');
p = quadprog(hess, grad, [], [], [], [], lb, ub, [], opts);
subfval = 0.5 * p' * hess * p + grad' * p;
if norm(p) > delta
p = delta * p / norm(p);
subfval = 0.5 * delta^2;
subexitflag = 0;
else
subexitflag = 1;
end
```
在这个示例程序中,`fun`是要最小化的目标函数,`x0`是初始点,`lb`和`ub`是可选的下界和上界。程序使用了Matlab自带的`gradient`和`diff`函数来计算梯度和Hessian矩阵,使用了Matlab自带的`quadprog`函数来求解信赖域子问题。在每次迭代中,程序计算当前点的梯度和Hessian矩阵,然后使用信赖域子问题求解器来求解信赖域子问题,更新当前点和目标函数值,并根据收敛标准调整信赖域半径。如果达到最大迭代次数而没有收敛,则算法停止并返回失败标志。
阅读全文