transformer代码c
时间: 2023-09-03 09:15:59 浏览: 283
transformer的代码大致如下所示:
```python
class Transformer(nn.Module):
def __init__(self, d_model=512, nhead=8, num_encoder_layers=6, num_decoder_layers=6, dim_feedforward=2048, dropout=0.1, activation="relu", normalize_before=False, return_intermediate_dec=False):
super().__init__()
# encode
encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward, dropout, activation, normalize_before)
encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)
# decode
decoder_layer = TransformerDecoderLayer(d_model, nhead, dim_feedforward, dropout, activation, normalize_before)
decoder_norm = nn.LayerNorm(d_model)
self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers, decoder_norm, return_intermediate=return_intermediate_dec)
```
以上是transformer模型的主要代码结构。它由一个encoder和一个decoder组成,其中encoder由多个encoder_layer堆叠而成,decoder由多个decoder_layer堆叠而成。每个encoder_layer包含self-attention和feed forward两个层,而每个decoder_layer包含mask self-attention、encoder-decoder attention和feed forward三个层。这些层的组合形成了transformer模型的总体结构。
你没有提供完整的代码,如果你需要更详细的解释,请提供完整的代码。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *3* [End-to-End Object Detection with Transformers[DETR]](https://blog.csdn.net/feng__shuai/article/details/106625695)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
- *2* [Transformer 代码+原理](https://blog.csdn.net/init__/article/details/121585137)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文