bool ringActiveLocally = outputs.isActiveLocally(toVolumeSource(AUDIO_STREAM_RING), 0); // - for STRATEGY_SONIFICATION and ringtone active: // if SPEAKER was selected, and SPEAKER_SAFE is available, use SPEAKER_SAFE instead // - for STRATEGY_SONIFICATION_RESPECTFUL: // if no media is playing on the device, check for mandatory use of "safe" speaker // when media would have played on speaker, and the safe speaker path is available if (strategy == STRATEGY_SONIFICATION || ringActiveLocally || (strategy == STRATEGY_SONIFICATION_RESPECTFUL && !mediaActiveLocally)) { devices.replaceDevicesByType( AUDIO_DEVICE_OUT_SPEAKER, availableOutputDevices.getDevicesFromType( AUDIO_DEVICE_OUT_SPEAKER_SAFE)); } } break; case STRATEGY_CALL_ASSISTANT: devices = availableOutputDevices.getDevicesFromType(AUDIO_DEVICE_OUT_TELEPHONY_TX); break; case STRATEGY_NONE: // Happens when internal strategies are processed ("rerouting", "patch"...) break; default: ALOGW("%s unknown strategy: %d", __func__, strategy); break;

时间: 2024-02-14 16:35:09 浏览: 25
这段代码是关于选择输出设备的具体实现。首先,代码会根据当前的策略类型(`strategy`)和铃声是否正在播放(`ringActiveLocally`),选择是否要使用“safe”扬声器。如果当前策略是`STRATEGY_SONIFICATION`或者铃声正在播放,那么会尝试使用“safe”扬声器来输出声音,这是为了避免铃声等声音过大,导致设备损坏。其次,如果当前策略是`STRATEGY_SONIFICATION_RESPECTFUL`,并且没有其他媒体正在播放,那么也会尝试使用“safe”扬声器来输出声音。最后,根据不同的策略类型,会选择不同的输出设备。如果当前策略是`STRATEGY_CALL_ASSISTANT`,则会选择电话扬声器(`AUDIO_DEVICE_OUT_TELEPHONY_TX`),如果是`STRATEGY_NONE`,则不需要进行任何操作。如果策略类型不是以上任何一种,则会输出一个警告信息。
相关问题

这段代码有什么错误def forward(self,x): num_nodes = x.size(1) # sub_graph size batch_size = x.size(0) W = torch.cat([self.W] * batch_size, dim=0) representation = torch.matmul(x, W) r_sum = torch.sum(representation, dim=-1, keepdim=False) b = torch.zeros([batch_size, num_nodes]) b = Variable(b) one = torch.ones_like(r_sum) zero = torch.zeros_like(r_sum) label = torch.clone(r_sum) label = torch.where(label == 0, one, zero) b.data.masked_fill_(label.bool(), -float('inf')) num_iterations = 3 for i in range(num_iterations): c = torch.nn.functional.softmax(b, dim=-1) weight_coeff = c.unsqueeze(dim=1) representation_global = torch.matmul(weight_coeff, representation) representation_global_all = torch.cat([representation_global] * num_nodes, dim=1) representation_similarity = torch.nn.functional.cosine_similarity(representation, representation_global_all, dim=-1) representation_similarity.data.masked_fill_(label.bool(), -float('inf')) b = representation_similarity return representation_global.squeeze(dim=1)

这段代码中存在一个错误。在for循环中,代码更新了变量b,但是在更新后没有再次进行softmax操作,导致后续的计算结果不正确。因此,需要在for循环中,在更新b后再次进行softmax操作,如下所示: ``` for i in range(num_iterations): c = torch.nn.functional.softmax(b, dim=-1) weight_coeff = c.unsqueeze(dim=1) representation_global = torch.matmul(weight_coeff, representation) representation_global_all = torch.cat([representation_global] * num_nodes, dim=1) representation_similarity = torch.nn.functional.cosine_similarity(representation, representation_global_all, dim=-1) representation_similarity.data.masked_fill_(label.bool(), -float('inf')) b = torch.nn.functional.softmax(representation_similarity, dim=-1) # 进行softmax操作 ``` 这样修改后,该段代码的功能应该能够正常运行。

Traceback (most recent call last): File "dense_pcd.py", line 7, in <module> create_dense_point_cloud(model_root, save_root) File "/home/chao/anaconda3/envs/suctionnet/lib/python3.7/site-packages/suctionnetAPI/create_dense_pcd.py", line 33, in create_dense_point_cloud v_poisson, n_poisson = pcu.sample_mesh_poisson_disk(v, f, n, num_samples=-1, radius=0.0002, use_geodesic_distance=True) TypeError: sample_mesh_poisson_disk(): incompatible function arguments. The following argument types are supported: 1. (v: numpy.ndarray, f: numpy.ndarray, num_samples: int, radius: float = 0.0, use_geodesic_distance: bool = True, best_choice_sampling: bool = True, random_seed: int = 0, sample_num_tolerance: float = 0.04, oversampling_factor: float = 40.0) -> Tuple[object, object]

这是一个 Python 错误信息,看起来是 create_dense_pcd.py 中的 sample_mesh_poisson_disk 函数调用出错了。错误信息中提到该函数支持的参数类型,但是传入的参数类型与支持的不一致。需要检查传入该函数的参数类型是否正确,或者尝试更改函数的参数类型以适应当前的参数。

相关推荐

#include <ros/ros.h> #include <turtlesim/Pose.h> #include <geometry_msgs/Twist.h> #include <std_srvs/Empty.h> #include <cmath> ros::Publisher twist_pub; void poseCallback(const turtlesim::Pose& pose) { static bool is_forward = true; static int count = 0; static float x_start = pose.x; static float y_start = pose.y; static float theta_start = pose.theta; // Calculate distance from starting points float dist = std::sqrt(std::pow(pose.x - x_start, 2) + std::pow(pose.y - y_start, 2)); geometry_msgs::Twist twist_msg; twist_msg.linear.x = 1.0; twist_msg.linear.y = 0.0; twist_msg.linear.z = 0.0; twist_msg.angular.x = 0.0; twist_msg.angular.y = 0.0; twist_msg.angular.z = 0.0; // Check if turtle has reached distance of 2. If so, stop and shutdown the node. if (pose.x - x_start1) { twist_msg.linear.x = 0.0; twist_msg.linear.y = 1.0; twist_pub.publish(twist_msg); // Publish command if(pose.y - y_start>=2.0){ twist_msg.linear.x = -1.0; twist_msg.linear.y = 0.0; twist_pub.publish(twist_msg); // Publish command if(dist<=2.0){ twist_msg.linear.x = 0.0; twist_msg.linear.y = -1.0; twist_pub.publish(twist_msg); // Publish command ROS_INFO("Stop and Completed!"); twist_pub.publish(twist_msg); // Publish command ros::shutdown(); } } } twist_pub.publish(twist_msg); // Publish command } int main(int argc, char** argv) { ros::init(argc, argv, "lab1_node"); ros::NodeHandle nh; twist_pub = nh.advertise<geometry_msgs::Twist>("turtle1/cmd_vel", 1); ros::Subscriber pose_sub = nh.subscribe("turtle1/pose", 1, poseCallback); // reset the turtlesim when this node starts ros::ServiceClient reset = nh.serviceClient<std_srvs::Empty>("reset"); std_srvs::Empty empty; reset.call(empty); ros::spin(); // Keep node running until ros::shutdown() return 0; } 这段代码为什么不能实现乌龟沿完整矩形轨迹运动?并给出修改后的代码

解释以下代码bool ret = laser.initialize(); if (ret) { ret = laser.turnOn(); } else { RCLCPP_ERROR(node->get_logger(), "%s\n", laser.DescribeError()); } auto laser_pub = node->create_publisher<sensor_msgs::msg::LaserScan>("scan", rclcpp::SensorDataQoS()); auto stop_scan_service = [&laser](const std::shared_ptr<rmw_request_id_t> request_header, const std::shared_ptr<std_srvs::srv::Empty::Request> req, std::shared_ptr<std_srvs::srv::Empty::Response> response) -> bool { return laser.turnOff(); }; auto stop_service = node->create_service<std_srvs::srv::Empty>("stop_scan",stop_scan_service); auto start_scan_service = [&laser](const std::shared_ptr<rmw_request_id_t> request_header, const std::shared_ptr<std_srvs::srv::Empty::Request> req, std::shared_ptr<std_srvs::srv::Empty::Response> response) -> bool { return laser.turnOn(); }; auto start_service = node->create_service<std_srvs::srv::Empty>("start_scan",start_scan_service); rclcpp::WallRate loop_rate(20); while (ret && rclcpp::ok()) { LaserScan scan;// if (laser.doProcessSimple(scan)) { auto scan_msg = std::make_shared<sensor_msgs::msg::LaserScan>(); scan_msg->header.stamp.sec = RCL_NS_TO_S(scan.stamp); scan_msg->header.stamp.nanosec = scan.stamp - RCL_S_TO_NS(scan_msg->header.stamp.sec); scan_msg->header.frame_id = frame_id; scan_msg->angle_min = scan.config.min_angle; scan_msg->angle_max = scan.config.max_angle; scan_msg->angle_increment = scan.config.angle_increment; scan_msg->scan_time = scan.config.scan_time; scan_msg->time_increment = scan.config.time_increment; scan_msg->range_min = scan.config.min_range; scan_msg->range_max = scan.config.max_range; int size = (scan.config.max_angle - scan.config.min_angle)/ scan.config.angle_increment + 1; scan_msg->ranges.resize(size); scan_msg->intensities.resize(size); for(size_t i=0; i < scan.points.size(); i++) { int index = std::ceil((scan.points[i].angle - scan.config.min_angle)/scan.config.angle_increment); if(index >=0 && index < size) { scan_msg->ranges[index] = scan.points[i].range; scan_msg->intensities[index] = scan.points[i].intensity; } } laser_pub->publish(*scan_msg); } else { RCLCPP_ERROR(node->get_logger(), "Failed to get scan"); } if(!rclcpp::ok()) { break; } rclcpp::spin_some(node); loop_rate.sleep(); } RCLCPP_INFO(node->get_logger(), "[YDLIDAR INFO] Now YDLIDAR is stopping ......."); laser.turnOff(); laser.disconnecting(); rclcpp::shutdown(); return 0; }

最新推荐

recommend-type

基于matlab实现人工免疫算法的解决TSP问题的方法

基于matlab实现人工免疫算法的解决TSP问题的方法,体现了免疫算法在进化计算过程中的抗原学习、记忆机制、浓度调节机制以及多样性抗体保持策略等优良特性.rar
recommend-type

麦肯锡图表绘制培训.pptx

麦肯锡图表绘制培训.pptx
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】增量式PID的simulink仿真实现

# 2.1 Simulink仿真环境简介 Simulink是MATLAB中用于建模、仿真和分析动态系统的图形化环境。它提供了一个直观的用户界面,允许用户使用块和连接线来创建系统模型。Simulink模型由以下元素组成: - **子系统:**将复杂系统分解成更小的、可管理的模块。 - **块:**代表系统中的组件,如传感器、执行器和控制器。 - **连接线:**表示信号在块之间的流动。 Simulink仿真环境提供了广泛的块库,涵盖了各种工程学科,包括控制系统、电子和机械工程。它还支持用户自定义块的创建,以满足特定仿真需求。 # 2. Simulink仿真环境的搭建和建模 ### 2.
recommend-type

训练集和测试集的准确率都99%,但是预测效果不好

即使训练集和测试集的准确率都很高,但是在实际的预测中表现不佳,可能会有以下几个原因: 1. 数据质量问题:模型训练和测试的数据可能存在问题,比如数据标签错误、数据集采样不均衡、数据集中存在异常值等问题,这些问题可能会导致模型在实际预测中表现不佳。 2. 特征工程问题:模型的特征工程可能存在问题,导致模型无法很好地捕捉数据的特征,从而影响预测效果。 3. 模型选择问题:模型的选择可能不合适,比如选择的模型太简单,无法很好地拟合数据,或者选择的模型太复杂,导致过拟合等问题。 4. 超参数调整问题:模型的超参数可能没有调整到最佳状态,需要进行调整。 针对以上可能的原因,可以采取相应的措施进
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】MATLAB simulink船舶动力定位模拟器

# 1. MATLAB Simulink 简介** MATLAB Simulink 是 MathWorks 公司开发的一款图形化建模和仿真软件,广泛应用于工程、科学和教育领域。它提供了丰富的模块库和仿真环境,使工程师能够快速构建和仿真复杂系统。 Simulink 的核心概念是基于块状图建模,其中每个模块代表一个特定的功能或组件。用户可以通过拖放模块并连接它们来创建系统模型。Simulink 提供了广泛的模块库,涵盖了信号处理、控制系统、动力学和通信等领域。 此外,Simulink 还支持自定义模块开发,允许用户创建自己的模块来扩展其功能。这使得 Simulink 成为一个高度灵活的仿真平
recommend-type

linux下RS485怎么实现

在Linux下实现RS485通信,需要做以下几个步骤: 1. 确认硬件支持:首先需要确认通信设备硬件是否支持RS485通信,如果不支持需要更换支持RS485通信的硬件设备。 2. 配置串口参数:在Linux下使用RS485通信,需要对串口进行一些特殊的配置。例如,需要将串口设置为半双工模式、开启硬件流控等。可以使用Linux提供的stty命令或者相关API接口进行配置。 3. 编写应用程序:通过Linux提供的串口API接口,编写应用程序实现RS485通信。在应用程序中需要设置对应的串口参数,以及发送和接收数据的逻辑。 4. 配置硬件电平转换器:在使用RS485通信时,需要将串口的逻辑