怎么用MATLAB把qlim函数把theta中的q1变到d上

时间: 2024-10-19 19:12:41 浏览: 21
在MATLAB中,`qlim`函数通常用于计算量子力学中的算符本征值范围。如果你想将变量`q1`从`theta`结构中的某个矩阵或数组中提取出来并赋值给新的变量`d`,你需要明确指定`theta`的结构形式以及`q1`所在的路径。假设`theta`有一个嵌套结构,`q1`位于最顶层,你可以这样做: ```matlab % 假设 theta 结构如下: % theta.q1 是你要提取的 q1 数组 theta.q1 = d; % 将 q1 的内容赋值给新变量 d % 如果 q1 在 theta 的嵌套结构中,例如 theta.someNestedStruct.q1: if isfield(theta, 'someNestedStruct') && isfield(theta.someNestedStruct, 'q1') d = theta.someNestedStruct.q1; else error('q1 not found in theta'); end ``` 如果你需要的是将整个矩阵或数组复制而不是赋值,可以使用`copyobj`函数: ```matlab d = copyobj(theta.q1); % 复制 q1 到 d ```
相关问题

怎么用MATLAB把机械臂中qlim函数把theta中的q1变到d上

在MATLAB中,`qlim`函数通常用于设定关节角度的限制,而`theta`变量代表机械臂关节的角度向量。如果你想将`theta`向量中的第一个关节`q1`值变换到另一个范围(`d`),你可以通过创建一个新的向量并直接赋值来实现这个转换。 假设`qlim`返回的是一个包含两个元素的一维向量,表示当前的`q1`角限,比如`[qlim_min, qlim_max]`,而`d`是你想要的目标范围,比如`[d_min, d_max]`。你可以按照以下步骤操作: ```matlab % 获取原始的q1限制 [q1_min, q1_max] = qlim; % 检查目标范围是否合法 if ~all([d_min <= d_max, d_min >= q1_min, d_max <= q1_max]) error('Invalid target range'); end % 计算新的q1值,确保它在这个新范围内 theta_new = theta; theta_new(1) = min(max(theta(1), q1_min), d_max); % 如果你想对所有超出范围的q1值做调整,可以遍历整个theta向量 for i = 1:length(theta) if theta(i) < q1_min || theta(i) > q1_max theta_new(i) = min(max(theta(i), q1_min), d_max); end end ``` 上述代码首先检查目标范围的有效性,然后更新`theta`的第一个元素`q1`。如果想对所有关节都做类似处理,就需要遍历整个`theta`向量。

matlab的qlim函数

qlim函数是MATLAB中的一个图像处理函数,用于计算图像的灰度级范围。它的语法如下: qlim(I) 其中,I是一个灰度图像,可以是uint8、uint16、int16或double类型。qlim函数将计算图像中的最小和最大灰度级,并返回一个长度为2的向量,表示最小和最大灰度级的范围。 例如,假设有一个灰度图像I,可以使用以下代码找到其灰度级范围: range = qlim(I); 然后,range(1)将给出最小灰度级,range(2)将给出最大灰度级。 需要注意的是,qlim函数仅适用于灰度图像,如果输入图像是彩色图像,则需要先将其转换为灰度图像再使用qlim函数。
阅读全文

相关推荐

clear all; clc; du = pi/180; L1(1) = Link('theta', 90*du+0.02, 'a', 0+0.001, 'alpha', 0+0.003, 'qlim', [180, 365], 'modified'); L1(2) = Link('d', 0+0.001, 'a', 185+0.0079, 'alpha', 0+0.001, 'qlim', [3*du, 63*du], 'modified'); L1(3) = Link('d', 90+0.005, 'a', 0+0.005, 'alpha', pi/2+0.005, 'qlim', [60*du, 120*du], 'modified'); L1(4) = Link('theta', 0, 'a', 120+0.12, 'alpha', pi/2, 'qlim', [230, 326], 'modified'); L1(3).theta = L1(3).theta + 0.023; L1(4).theta = L1(4).theta + 0.08; Needle = SerialLink(L1, 'name', 'Needle'); a = [0+0.001, 185+0.0079, 0+0.005, 120+0.12]; alpha = [0+0.003, 0+0.001, pi/2+0.005, pi/2]; d = [0+0.001, 90+0.005, 0+0.005, 0]; theta = [90*du+0.02, 0, L1(3).theta, L1(4).theta]; beta = zeros(1, 4)+0; T1 = DH(1, a(1), alpha(1), d(1), theta(1)+beta(1)); T2 = DH(2, a(2), alpha(2), d(2), theta(2)+beta(2)); T3 = DH(3, a(3), alpha(3), d(3), theta(3)+beta(3)); T4 = DH(4, a(4), alpha(4), d(4), theta(4)+beta(4)); T = T1*T2*T3*T4; delta_a = 0.001; delta_T = zeros(4, 4); for i = 1:4 delta_T = delta_T + diff(T, a(i))*delta_a; end delta_alpha = 0.003; for i = 1:4 delta_T = delta_T + diff(T, alpha(i))*delta_alpha; end delta_d = 0.005; for i = 1:4 delta_T = delta_T + diff(T, d(i))*delta_d; end delta_theta = 0.02*du; for i = 1:4 delta_T = delta_T + diff(T, theta(i))*delta_theta; end delta_beta = 0.0; for i = 1:4 delta_T = delta_T + diff(T, beta(i))*delta_beta; end q = [90*du, 0, L1(3).theta, L1(4).theta]; T = Needle.fkine(q); pos = T(1:3, 4); euler = tr2eul(T, 'ZYX')/du; delta_pos = delta_T(1:3, 4); delta_euler = tr2eul(delta_T, 'ZYX')/du;这段代码现实的错误过多不能再MATLAB中运行。帮我修改正确

clc; du = pi/180; L1(1)=Link('theta',-123du,'a', 0, 'alpha',0,'qlim',[180,365],'modified'); L1(2)=Link('d',0,'a',185, 'alpha',0,'qlim',[3du,63du],'modified'); L1(3)=Link('d',90,'a', 0, 'alpha',pi/2,'qlim',[60du,120du],'modified'); L1(4)=Link('theta',0,'a', 120, 'alpha',pi/2,'qlim',[230,326],'modified'); Needle=SerialLink(L1,'name','Needle'); % 随机生成关节转角值,并计算末端执行器位姿矩阵 q_rand = (rand(1,4) - 0.5) . [pi, pi/2, pi/2, pi/2]; % 生成在[-pi/2, pi/2]范围内的随机角度值 T_rand = Needle.fkine(q_rand); % 输出结果 disp("随机生成的关节角度值:") disp(q_rand) disp("随机生成的末端执行器位姿矩阵:") disp(T_rand) 运行上述代码后,MATLAB命令窗口会输出随机生成的关节角度值和末端执行器位姿矩阵。B的命令窗口中执行,代码中的 Needle 是之前定义的机器人模型,需要先运行之前的代码以创建机器人模型。 以下是一个简单的例子,展示如何运行这段代码: 复制 % 定义机器人模型 clear; clc; du = pi/180; L1(1)=Link('theta',-123du,'a', 0, 'alpha',0,'qlim',[180,365],'modified'); L1(2)=Link('d',0,'a',185, 'alpha',0,'qlim',[3du,63du],'modified'); L1(3)=Link('d',90,'a', 0, 'alpha',pi/2,'qlim',[60du,120du],'modified'); L1(4)=Link('theta',0,'a', 120, 'alpha',pi/2,'qlim',[230,326],'modified'); Needle=SerialLink(L1,'name','Needle'); % 随机生成关节转角值,并计算末端执行器位姿矩阵 q_rand = (rand(1,4) - 0.5) . [pi, pi/2, pi/2, pi/2]; % 生成在[-pi/2, pi/2]范围内的随机角度值 T_rand = Needle.fkine(q_rand); % 输出结果 disp("随机生成的关节角度值:") disp(q_rand) disp("随机生成的末端执行器位姿矩阵:") disp(T_rand) 运行上述代码后,MATLAB命令窗口会输出随机生成的关节角度值和末端执行器位姿矩阵。那生成的随机关节角度值分别代表着哪些关节能够指明一下,生成的位姿矩阵该怎么去理解这个位姿矩阵,使用 MATLAB 的工具箱函数 给我可视化这个位姿矩阵对应的机器人姿态。

syms da dalpha dd dtheta dbeta; da = 0; dalpha = 0; dd = 0; dtheta = 0; dbeta = 0; du = pi/180; L1(1) = Link('theta', 90du+0.02+dtheta, 'a', 0+0.001+da, 'alpha', 0+0.003+dalpha, 'qlim', [180du, 365du], 'offset', 0, 'modified'); L1(2) = Link('d', 0+0.001+dd, 'a', 185+0.0079, 'alpha', 0+0.001, 'qlim', [3du, 63du], 'offset', 0, 'modified'); L1(3) = Link('d', 90+0.005+dd, 'a', 0+0.005+da, 'alpha', pi/2+0.005+dalpha, 'qlim', [60du, 120du], 'offset', pi/2, 'modified'); L1(4) = Link('theta', 0+dtheta, 'a', 120+0.12, 'alpha', pi/2, 'qlim', [230du, 326du], 'offset', 0, 'modified'); L1(3).theta = L1(3).theta + 0.023 + dtheta; L1(4).theta = L1(4).theta + 0.08 + dtheta; Needle = SerialLink(L1, 'name', 'Needle'); theta1 = 0.1; theta2 = 0.2; theta3 = 0.3; theta4 = 0.4; T01_error = DH(L1(1).theta+dtheta, L1(1).a+da, L1(1).d+dd, L1(1).alpha+dalpha); T12_error = DH(L1(2).theta+dtheta, L1(2).a+da, L1(2).d+dd, L1(2).alpha+dalpha); T23_error = DH(L1(3).theta+dtheta, L1(3).a+da, L1(3).d+dd, L1(3).alpha+dalpha); T34_error = DH(L1(4).theta+dtheta, L1(4).a+da, L1(4).d+dd, L1(4).alpha+dalpha); T_error = simplify(T01_errorT12_errorT23_errorT34_error); T = Needle.fkine([theta1, theta2, theta3, theta4]); T_error = subs(T_error, [theta1, theta2, theta3, theta4], [L1(1).theta, L1(2).theta, L1(3).theta, L1(4).theta]); T_total = T*T_error; dx = T_total(1, 4); dy = T_total(2, 4); dz = T_total(3, 4); rx = atan2(T_total(3, 2), T_total(3, 3)); ry = atan2(-T_total(3, 1), sqrt(T_total(3, 2)^2 + T_total(3, 3)^2)); rz = atan2(T_total(2, 1), T_total(1, 1)); disp(['dx = ', num2str(dx)]); disp(['dy = ', num2str(dy)]); disp(['dz = ', num2str(dz)]); disp(['rx = ', num2str(rx)]); disp(['ry = ', num2str(ry)]); disp(['rz = ', num2str(rz)]);这段代码运行不出来,显示DH未定义,该怎么操作修改让这段MATLAB代码能够运行出来

clear all; clc; du = pi/180; a = [0+0.001, 185+0.0079, 0+0.005, 120+0.12]; alpha = [pi/2+0.003, 0+0.001, pi/2+0.005, pi/2]; d = [0+0.001, 0+0.0079, 90+0.005, 0+0.12]; theta = [90du+0.02, 0, 0.023, 0.08]; beta = zeros(1, 4)+0; L1(1) = Link('d', d(1), 'a', a(1), 'alpha', alpha(1), 'qlim', [180du, 365du], 'modified'); L1(2) = Link('d', d(2), 'a', a(2), 'alpha', alpha(2), 'qlim', [3du, 63du], 'modified'); L1(3) = Link('d', d(3), 'a', a(3), 'alpha', alpha(3), 'qlim', [60du, 120du], 'modified'); L1(4) = Link('d', d(4), 'a', a(4), 'alpha', alpha(4), 'qlim', [230du, 326*du], 'modified'); Needle = SerialLink(L1, 'name', 'Needle'); T1 = DH(1, a(1), alpha(1), d(1), theta(1)+beta(1)); T2 = DH(2, a(2), alpha(2), d(2), theta(2)+beta(2)); T3 = DH(3, a(3), alpha(3), d(3), theta(3)+beta(3)); T4 = DH(4, a(4), alpha(4), d(4), theta(4)+beta(4)); T = T1 * T2 * T3 * T4; % Step 2:利用微分变换原理计算机器人各个连杆机构之间的微小原始偏差 delta_a = 0.001; % a参数的微小偏差 delta_T1 = DH(1, a(1)+delta_a, alpha(1), d(1), theta(1)+beta(1)) - T1; delta_T2 = DH(2, a(2)+delta_a, alpha(2), d(2), theta(2)+beta(2)) - T2; delta_T3 = DH(3, a(3)+delta_a, alpha(3), d(3), theta(3)+beta(3)) - T3; delta_T4 = DH(4, a(4)+delta_a, alpha(4), d(4), theta(4)+beta(4)) - T4; % Step 3:计算误差矩阵 delta_T = delta_T1 * delta_T2 * delta_T3 * delta_T4; % Step 4:将误差矩阵转化为误差值 delta_theta = delta_T * [0; 0; 0; 1]; % 误差值这段代码帮我继续编写得到末端位姿误差,基于修DH模型对机器人进行运行学建模,存在几何参数有a,α,d,θ和β。当这些参数存在微小误差时,机器人的实际相邻连杆之间的变换关系和理论相邻连杆之间变换关系会存在一定的偏差,导致最后实际和理论的末端位姿坐标也存在误差,分别用 Δa、Δα、 Δd,、 Δθ;和 Δβ;来表示MD-H模型中的五个几何参数误差。利用微分变换原理将机器人各个连杆机构之间的微小原始偏差合成积累到末端位姿的误差视为各个连杆机构进行微分变换综合作用导致的结果,基于MD-H运动学模型建立误差模型,由于各个连杆机构都存在几何参数的误差,机器人的相邻连杆之间的变换矩阵也存在着微小偏差,根据微分运动变换原理,连杆之间的实际变换矩阵和理论变换矩阵存在一定关系。 帮我用MATLAB实现结合我做建立的机器人模型和DH参数,建立误差模型。

最新推荐

recommend-type

【java毕业设计】网页时装购物系统源码(springboot+vue+mysql+说明文档+LW).zip

管理员:首页、个人中心、用户管理、商品分类管理、颜色管理、商品信息管理、商品评价管理、系统管理、订单管理。 用户:首页、个人中心、商品评价管理、我的收藏管理、订单管理。 前台首页:首页、商品信息、商品资讯、个人中心、后台管理、购物车、客服等功能。 项目包含完整前后端源码和数据库文件 环境说明: 开发语言:Java 框架:springboot,mybatis JDK版本:JDK1.8 数据库:mysql 5.7 数据库工具:Navicat11 开发软件:eclipse/idea Maven包:Maven3.3
recommend-type

Kylin10 + GDAL2.4 + OSG3.6.4 + OsgEarth2.10.1

基于麒麟V10的osgearth2.10编译库
recommend-type

计算机系统维护技术.xps

计算机系统维护技术.xps
recommend-type

Angular实现MarcHayek简历展示应用教程

资源摘要信息:"MarcHayek-CV:我的简历的Angular应用" Angular 应用是一个基于Angular框架开发的前端应用程序。Angular是一个由谷歌(Google)维护和开发的开源前端框架,它使用TypeScript作为主要编程语言,并且是单页面应用程序(SPA)的优秀解决方案。该应用不仅展示了Marc Hayek的个人简历,而且还介绍了如何在本地环境中设置和配置该Angular项目。 知识点详细说明: 1. Angular 应用程序设置: - Angular 应用程序通常依赖于Node.js运行环境,因此首先需要全局安装Node.js包管理器npm。 - 在本案例中,通过npm安装了两个开发工具:bower和gulp。bower是一个前端包管理器,用于管理项目依赖,而gulp则是一个自动化构建工具,用于处理如压缩、编译、单元测试等任务。 2. 本地环境安装步骤: - 安装命令`npm install -g bower`和`npm install --global gulp`用来全局安装这两个工具。 - 使用git命令克隆远程仓库到本地服务器。支持使用SSH方式(`***:marc-hayek/MarcHayek-CV.git`)和HTTPS方式(需要替换为具体用户名,如`git clone ***`)。 3. 配置流程: - 在server文件夹中的config.json文件里,需要添加用户的电子邮件和密码,以便该应用能够通过内置的联系功能发送信息给Marc Hayek。 - 如果想要在本地服务器上运行该应用程序,则需要根据不同的环境配置(开发环境或生产环境)修改config.json文件中的“baseURL”选项。具体而言,开发环境下通常设置为“../build”,生产环境下设置为“../bin”。 4. 使用的技术栈: - JavaScript:虽然没有直接提到,但是由于Angular框架主要是用JavaScript来编写的,因此这是必须理解的核心技术之一。 - TypeScript:Angular使用TypeScript作为开发语言,它是JavaScript的一个超集,添加了静态类型检查等功能。 - Node.js和npm:用于运行JavaScript代码以及管理JavaScript项目的依赖。 - Git:版本控制系统,用于代码的版本管理及协作开发。 5. 关于项目结构: - 该应用的项目文件夹结构可能遵循Angular CLI的典型结构,包含了如下目录:app(存放应用组件)、assets(存放静态资源如图片、样式表等)、environments(存放环境配置文件)、server(存放服务器配置文件如上文的config.json)等。 6. 开发和构建流程: - 开发时,可能会使用Angular CLI来快速生成组件、服务等,并利用热重载等特性进行实时开发。 - 构建应用时,通过gulp等构建工具可以进行代码压缩、ES6转译、单元测试等自动化任务,以确保代码的质量和性能优化。 7. 部署: - 项目最终需要部署到服务器上,配置文件中的“baseURL”选项指明了服务器上的资源基础路径。 8. 关于Git仓库: - 压缩包子文件的名称为MarcHayek-CV-master,表明这是一个使用Git版本控制的仓库,且存在一个名为master的分支,这通常是项目的主分支。 以上知识点围绕Angular应用“MarcHayek-CV:我的简历”的创建、配置、开发、构建及部署流程进行了详细说明,涉及了前端开发中常见的工具、技术及工作流。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

深入剖析:内存溢出背后的原因、预防及应急策略(专家版)

![深入剖析:内存溢出背后的原因、预防及应急策略(专家版)](https://d8it4huxumps7.cloudfront.net/uploads/images/65e82a01a4196_dangling_pointer_in_c_2.jpg?d=2000x2000) 参考资源链接:[Net 内存溢出(System.OutOfMemoryException)的常见情况和处理方式总结](https://wenku.csdn.net/doc/6412b784be7fbd1778d4a95f?spm=1055.2635.3001.10343) # 1. 内存溢出的概念及影响 内存溢出,又称
recommend-type

Java中如何对年月日时分秒的日期字符串作如下处理:如何日期分钟介于两个相连的半点之间,就将分钟数调整为前半点

在Java中,你可以使用`java.time`包中的类来处理日期和时间,包括格式化和调整。下面是一个示例,展示了如何根据给定的日期字符串(假设格式为"yyyy-MM-dd HH:mm:ss")进行这样的处理: ```java import java.text.SimpleDateFormat; import java.time.LocalDateTime; import java.time.ZoneId; import java.time.ZonedDateTime; public class Main { public static void main(String[] args
recommend-type

Crossbow Spot最新更新 - 获取Chrome扩展新闻

资源摘要信息:"Crossbow Spot - Latest News Update-crx插件" 该信息是关于一款特定的Google Chrome浏览器扩展程序,名为"Crossbow Spot - Latest News Update"。此插件的目的是帮助用户第一时间获取最新的Crossbow Spot相关信息,它作为一个RSS阅读器,自动聚合并展示Crossbow Spot的最新新闻内容。 从描述中可以提取以下关键知识点: 1. 功能概述: - 扩展程序能让用户领先一步了解Crossbow Spot的最新消息,提供实时更新。 - 它支持自动更新功能,用户不必手动点击即可刷新获取最新资讯。 - 用户界面设计灵活,具有美观的新闻小部件,使得信息的展现既实用又吸引人。 2. 用户体验: - 桌面通知功能,通过Chrome的新通知中心托盘进行实时推送,确保用户不会错过任何重要新闻。 - 提供一个便捷的方式来保持与Crossbow Spot最新动态的同步。 3. 语言支持: - 该插件目前仅支持英语,但开发者已经计划在未来的版本中添加对其他语言的支持。 4. 技术实现: - 此扩展程序是基于RSS Feed实现的,即从Crossbow Spot的RSS源中提取最新新闻。 - 扩展程序利用了Chrome的通知API,以及RSS Feed处理机制来实现新闻的即时推送和展示。 5. 版权与免责声明: - 所有的新闻内容都是通过RSS Feed聚合而来,扩展程序本身不提供原创内容。 - 用户在使用插件时应遵守相关的版权和隐私政策。 6. 安装与使用: - 用户需要从Chrome网上应用店下载.crx格式的插件文件,即Crossbow_Spot_-_Latest_News_Update.crx。 - 安装后,插件会自动运行,并且用户可以对其进行配置以满足个人偏好。 从以上信息可以看出,该扩展程序为那些对Crossbow Spot感兴趣或需要密切跟进其更新的用户提供了一个便捷的解决方案,通过集成RSS源和Chrome通知机制,使得信息获取变得更加高效和及时。这对于需要实时更新信息的用户而言,具有一定的实用价值。同时,插件的未来发展计划中包括了多语言支持,这将使得更多的用户能够使用并从中受益。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【Java内存管理终极指南】:一次性解决内存溢出、泄漏和性能瓶颈

![【Java内存管理终极指南】:一次性解决内存溢出、泄漏和性能瓶颈](https://community.cloudera.com/t5/image/serverpage/image-id/31614iEBC942A7C6D4A6A1/image-size/large?v=v2&px=999) 参考资源链接:[Net 内存溢出(System.OutOfMemoryException)的常见情况和处理方式总结](https://wenku.csdn.net/doc/6412b784be7fbd1778d4a95f?spm=1055.2635.3001.10343) # 1. Java内存模型