分析代码def motion_compensate(img, Mvx, Mvy, pel): m, n = np.shape(img)[0], np.shape(img)[1] #读取行数、列数 img = resize(img, (np.int32(m/pel), np.int32(n/pel)), mode = 'reflect' ) Blocksize = np.floor(np.shape(img)[0]/np.shape(Mvx)[0]) m, n = np.shape(img)[0], np.shape(img)[1] M, N = np.int32(np.ceil(m/Blocksize)*Blocksize), np.int32(np.ceil(n/Blocksize)*Blocksize) f = img[0:M, 0:N] Mvxmap = resize(Mvy, (N,M)) Mvymap = resize(Mvx, (N,M)) xgrid, ygrid = np.meshgrid(np.arange(0,N-0.99), np.arange(0,M-0.99)) X = np.clip(xgrid+np.round(Mvxmap/pel),0,N-1) Y = np.clip(ygrid+np.round(Mvymap/pel),0,M-1) idx = np.int32(Y.flatten()*N + X.flatten()) f_vec = f.flatten() g = np.reshape(f_vec[idx],[N,M]) g = resize(g, (np.shape(g)[0]*pel,np.shape(g)[1]*pel)) return g

时间: 2023-11-12 21:07:43 浏览: 37
这段代码实现了运动补偿的功能,下面是对代码的详细解析: 1. 首先获取图像的行数和列数。 2. 通过resize函数对图像进行下采样,以减少计算量,pel为下采样的倍数。 3. 根据运动矢量的大小计算出块的大小,即Blocksize。 4. 将下采样后的图像f扩展到M*N的大小。 5. 将运动矢量Mvx和Mvy分别通过resize函数扩展到M*N的大小,得到Mvxmap和Mvymap。 6. 使用np.meshgrid函数创建网格,得到xgrid和ygrid。 7. 根据运动矢量的大小,计算出在当前帧中块的新位置,并使用np.clip函数将其限制在图像范围内,得到X和Y。 8. 将X和Y展平,并计算出在展平后的向量中的索引值idx。 9. 将f展平为f_vec,并使用idx将其重新排列为M*N的矩阵g。 10. 对g进行上采样,并返回结果g。 这段代码的作用是对输入的图像进行运动补偿处理,通过运动矢量Mvx和Mvy计算出图像中块的新位置,从而得到补偿后的图像。其中,运动矢量的大小决定了块的大小,而下采样和上采样则用于减少计算量和消除补偿后的锯齿状伪影。
相关问题

flag_noPSD = 0 if (p_obj.get('S') == None).any(): S = gen_PSD(p_obj) p_obj['S'] = S flag_noPSD = 1 MVx = np.real(np.fft.ifft2(p_obj['S'] * np.random.randn(2 * p_obj['N'], 2 * p_obj['N']))) * np.sqrt(2) * 2 * p_obj['N'] * (p_obj['L'] / p_obj['delta0']) MVx = MVx[round(p_obj['N'] / 2) :2 * p_obj['N'] - round(p_obj['N'] / 2), 0: p_obj['N']] #MVx = 1 / p_obj['scaling'] * MVx[round(p_obj['N'] / 2):2 * p_obj['N'] - round(p_obj['N'] / 2), 0: p_obj['N']] MVy = np.real(np.fft.ifft2(p_obj['S'] * np.random.randn(2 * p_obj['N'], 2 * p_obj['N']))) * np.sqrt(2) * 2 * p_obj['N'] * (p_obj['L'] / p_obj['delta0']) MVy = MVy[0:p_obj['N'], round(p_obj['N'] / 2): 2 * p_obj['N'] - round(p_obj['N'] / 2)] #MVy = 1 / p_obj['scaling'] * MVy[0:p_obj['N'], round(p_obj['N'] / 2): 2 * p_obj['N'] - round(p_obj['N'] / 2)] img_ = motion_compensate(img, MVx - np.mean(MVx), MVy - np.mean(MVy), 0.5) #plt.quiver(MVx[::10,::10], MVy[::10,::10], scale=60) #plt.show() if flag_noPSD == 1: return img_, p_obj else: return img_, p_obj

这段代码看起来像是用来进行图像运动补偿的。首先检查输入的参数p_obj中是否有PSD(Spectral Density),如果没有则生成一个PSD。生成MVx和MVy,然后对输入的图像进行运动补偿,得到补偿后的图像img_。最后根据是否生成了PSD来返回img_和p_obj或仅仅返回img_和p_obj。

C:\Users\Main\Desktop\openCV\opencv\build\include\opencv2\stitching\detail\exposure_compensate.hpp:47: error: C1021: 无效的预处理器命令“warning”

这个错误是由于在预处理器命令中使用了无效的命令"warning"导致的。要解决这个问题,你需要检查你的代码中是否有类似于以下的预处理器命令: ```cpp #pragma warning(suppress: C1021) ``` 如果有的话,你需要将其删除或注释掉。这个命令是用来抑制特定警告的,但在这种情况下,它是无效的。 另外,你还可以尝试以下方法来解决这个问题: 1. 确保你的OpenCV库已经正确安装并且路径设置正确。 2. 检查你的代码中是否有其他的预处理器命令或宏定义与OpenCV库的宏定义冲突,如果有的话,你需要进行相应的调整。 3. 如果你使用的是Visual Studio编译器,可以尝试在项目属性中禁用特定的警告,以避免出现这个错误。 希望这些方法能够帮助你解决这个问题。

相关推荐

void ADC_Activate(void) { __IO uint32_t wait_loop_index = 0U; #if (USE_TIMEOUT == 1) uint32_t Timeout = 0U; /* Variable used for timeout management / #endif / USE_TIMEOUT / /## Operation on ADC hierarchical scope: ADC instance #####################/ / Note: Hardware constraint (refer to description of the functions / / below): / / On this STM32 series, setting of these features is conditioned to / / ADC state: / / ADC must be disabled. / / Note: In this example, all these checks are not necessary but are / / implemented anyway to show the best practice usages / / corresponding to reference manual procedure. / / Software can be optimized by removing some of these checks, if / / they are not relevant considering previous settings and actions / / in user application. / if (LL_ADC_IsEnabled(ADC1) == 0) { / Run ADC self calibration / LL_ADC_StartCalibration(ADC1, LL_ADC_CALIB_OFFSET); / Poll for ADC effectively calibrated / #if (USE_TIMEOUT == 1) Timeout = ADC_CALIBRATION_TIMEOUT_MS; #endif / USE_TIMEOUT / while (LL_ADC_IsCalibrationOnGoing(ADC1) != 0) { #if (USE_TIMEOUT == 1) / Check Systick counter flag to decrement the time-out value / if (LL_SYSTICK_IsActiveCounterFlag()) { if(Timeout-- == 0) { / Error: Time-out / Error_Handler(); } } #endif / USE_TIMEOUT / } / Delay between ADC end of calibration and ADC enable. / / Note: Variable divided by 2 to compensate partially / / CPU processing cycles (depends on compilation optimization). / wait_loop_index = (ADC_DELAY_CALIB_ENABLE_CPU_CYCLES >> 1); while(wait_loop_index != 0) { wait_loop_index--; } / Enable ADC / LL_ADC_Enable(ADC1); / Poll for ADC ready to convert / #if (USE_TIMEOUT == 1) Timeout = ADC_ENABLE_TIMEOUT_MS; #endif / USE_TIMEOUT / while (LL_ADC_IsActiveFlag_ADRDY(ADC1) == 0) { #if (USE_TIMEOUT == 1) / Check Systick counter flag to decrement the time-out value / if (LL_SYSTICK_IsActiveCounterFlag()) { if(Timeout-- == 0) { / Error: Time-out / Error_Handler(); } } #endif / USE_TIMEOUT / } / Note: ADC flag ADRDY is not cleared here to be able to check ADC / / status afterwards. / / This flag should be cleared at ADC Deactivation, before a new / / ADC activation, using function "LL_ADC_ClearFlag_ADRDY()". */ }请逐行解释代码

最新推荐

recommend-type

iPhone Game Development: Developing 2D & 3D games in Objective-C

You also get plug-in classes to compensate for the areas where the iPhone's game programming support is weak. * Learn how to develop iPhone games that provide engaging user experiences * Become ...
recommend-type

基于NFV的虚拟化BRAS组网方案.docx

5G通信行业、网络优化、通信工程建设资料。
recommend-type

299-煤炭大数据智能分析解决方案.pptx

299-煤炭大数据智能分析解决方案.pptx
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

ActionContext.getContext().get()代码含义

ActionContext.getContext().get() 是从当前请求的上下文对象中获取指定的属性值的代码。在ActionContext.getContext()方法的返回值上,调用get()方法可以获取当前请求中指定属性的值。 具体来说,ActionContext是Struts2框架中的一个类,它封装了当前请求的上下文信息。在这个上下文对象中,可以存储一些请求相关的属性值,比如请求参数、会话信息、请求头、应用程序上下文等等。调用ActionContext.getContext()方法可以获取当前请求的上下文对象,而调用get()方法可以获取指定属性的值。 例如,可以使用 Acti
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向

![:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向](https://img-blog.csdnimg.cn/7e3d12895feb4651b9748135c91e0f1a.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA5rKJ6YaJ77yM5LqO6aOO5Lit,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. YOLO目标检测算法简介 YOLO(You Only Look Once)是一种