directory = os.path.join(dataset_path, i)
时间: 2024-05-31 15:06:27 浏览: 183
os.path.join(dataset_path, i) 是一个 Python 中用于拼接文件路径的函数,其中 dataset_path 是主路径,i 是次路径,通过调用该函数,可以生成一个完整的文件路径。在机器学习中,通常会将数据集存储在不同的目录中,使用 os.path.join 函数可以方便地获取不同目录下的数据。例如,如果 dataset_path 是 "/home/user/data",i 是 "train",则 os.path.join(dataset_path, i) 将返回 "/home/user/data/train",这样就可以访问数据集目录下的训练数据了。
相关问题
from pdb import set_trace as st import os import numpy as np import cv2 import argparse parser = argparse.ArgumentParser('create image pairs') parser.add_argument('--fold_A', dest='fold_A', help='input directory for image A', type=str, default='../dataset/50kshoes_edges') parser.add_argument('--fold_B', dest='fold_B', help='input directory for image B', type=str, default='../dataset/50kshoes_jpg') parser.add_argument('--fold_AB', dest='fold_AB', help='output directory', type=str, default='../dataset/test_AB') parser.add_argument('--num_imgs', dest='num_imgs', help='number of images',type=int, default=1000000) parser.add_argument('--use_AB', dest='use_AB', help='if true: (0001_A, 0001_B) to (0001_AB)',action='store_true') args = parser.parse_args() for arg in vars(args): print('[%s] = ' % arg, getattr(args, arg)) splits = os.listdir(args.fold_A) for sp in splits: img_fold_A = os.path.join(args.fold_A, sp) img_fold_B = os.path.join(args.fold_B, sp) img_list = os.listdir(img_fold_A) if args.use_AB: img_list = [img_path for img_path in img_list if '_A.' in img_path] num_imgs = min(args.num_imgs, len(img_list)) print('split = %s, use %d/%d images' % (sp, num_imgs, len(img_list))) img_fold_AB = os.path.join(args.fold_AB, sp) if not os.path.isdir(img_fold_AB): os.makedirs(img_fold_AB) print('split = %s, number of images = %d' % (sp, num_imgs)) for n in range(num_imgs): name_A = img_list[n] path_A = os.path.join(img_fold_A, name_A) if args.use_AB: name_B = name_A.replace('_A.', '_B.') else: name_B = name_A path_B = os.path.join(img_fold_B, name_B) if os.path.isfile(path_A) and os.path.isfile(path_B): name_AB = name_A if args.use_AB: name_AB = name_AB.replace('_A.', '.') # remove _A path_AB = os.path.join(img_fold_AB, name_AB) im_A = cv2.imread(path_A, cv2.IMREAD_COLOR) im_B = cv2.imread(path_B, cv2.IMREAD_COLOR) im_AB = np.concatenate([im_A, im_B], 1) cv2.imwrite(path_AB, im_AB),解释上述代码,并告诉我怎么设置文件夹格式
这段代码用于创建图像对,将两个文件夹中的图像拼接在一起,并将结果保存在一个新的文件夹中。下面是代码的简要解释:
1. 引入必要的库:pdb、os、numpy、cv2和argparse。
2. 使用argparse来解析命令行参数,包括输入目录和输出目录等。
3. 遍历输入目录中的所有文件夹,并获取每个文件夹中的图像列表。
4. 根据命令行参数,选择要使用的图像对(如果--use_AB参数为true,则仅使用"_A"结尾的图像作为输入A,使用相应的"_B"图像作为输入B)。
5. 将输入A和输入B图像拼接在一起,并将结果保存在输出目录中。
6. 最后,打印出图像对的数量和输出目录等信息。
文件夹格式应该是这样的:
- dataset
- 50kshoes_edges
- split1
- 0001_A.png
- 0002_A.png
- ...
- split2
- 0001_A.png
- 0002_A.png
- ...
- ...
- 50kshoes_jpg
- split1
- 0001_B.jpg
- 0002_B.jpg
- ...
- split2
- 0001_B.jpg
- 0002_B.jpg
- ...
- ...
- test_AB
- split1
- 0001.png
- 0002.png
- ...
- split2
- 0001.png
- 0002.png
- ...
- ...
from pdb import set_trace as st import os import numpy as np import cv2 import argparse parser = argparse.ArgumentParser('create image pairs') parser.add_argument('--fold_A', dest='fold_A', help='input directory for image A', type=str, default='./dataset/blurred') parser.add_argument('--fold_B', dest='fold_B', help='input directory for image B', type=str, default='./dataset/sharp') parser.add_argument('--fold_AB', dest='fold_AB', help='output directory', type=str, default='../dataset/out') parser.add_argument('--num_imgs', dest='num_imgs', help='number of images',type=int, default=1000000) parser.add_argument('--use_AB', dest='use_AB', help='if true: (0001_A, 0001_B) to (0001_AB)',action='store_true') args = parser.parse_args() for arg in vars(args): print('[%s] = ' % arg, getattr(args, arg)) splits = os.listdir(args.fold_A) for sp in splits: img_fold_A = os.path.join(args.fold_A, sp) img_fold_B = os.path.join(args.fold_B, sp) img_list = os.listdir(img_fold_A) if args.use_AB: img_list = [img_path for img_path in img_list if '_A.' in img_path] num_imgs = min(args.num_imgs, len(img_list)) print('split = %s, use %d/%d images' % (sp, num_imgs, len(img_list))) img_fold_AB = os.path.join(args.fold_AB, sp) if not os.path.isdir(img_fold_AB): os.makedirs(img_fold_AB) print('split = %s, number of images = %d' % (sp, num_imgs)) for n in range(num_imgs): name_A = img_list[n] path_A = os.path.join(img_fold_A, name_A) if args.use_AB: name_B = name_A.replace('_A.', '_B.') else: name_B = name_A path_B = os.path.join(img_fold_B, name_B) if os.path.isfile(path_A) and os.path.isfile(path_B): name_AB = name_A if args.use_AB: name_AB = name_AB.replace('_A.', '.') # remove _A path_AB = os.path.join(img_fold_AB, name_AB) im_A = cv2.imread(path_A, cv2.IMREAD_COLOR) im_B = cv2.imread(path_B, cv2.IMREAD_COLOR) im_AB = np.concatenate([im_A, im_B], 1) cv2.imwrite(path_AB, im_AB),运行上述代码,提示错误:NotADirectoryError: [WinError 267] 目录名称无效。: 'D:\Users\Administrator\PycharmProjects\pythonProject\DeblurGAN-master\datasets\blurred\1.jpg'
根据错误提示,看起来是指定的目录名称无效。具体来说,是出现了一个名为'1.jpg'的文件,而在代码中尝试将其作为目录来处理。你需要检查代码中是否有将文件名误认为是目录名的情况,可以使用os.path.isdir()函数来判断是否为目录。同时,你也可以手动检查一下指定的目录是否存在以及目录中是否存在名为'1.jpg'的文件。
阅读全文