torch.cat(xx,1)
时间: 2023-10-07 12:09:26 浏览: 153
torch.cat(xx,1)是torch中的一个函数,用于将多个张量按照指定的维度进行拼接。其中,xx是一个列表或元组,包含了需要拼接的张量。在拼接时,参数1表示按行拼接,参数0表示按列拼接。换句话说,torch.cat(xx,1)将多个张量按列拼接成一个更大的张量。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* *3* [Python torch.diag方法代码示例](https://blog.csdn.net/weixin_39831493/article/details/110983104)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"]
[ .reference_list ]
相关问题
pt_x_bc_var = Variable(torch.from_numpy(x_bc_var).float(), requires_grad=False) pt_x_in_pos_one = Variable(torch.from_numpy(x_in_pos_one).float(), requires_grad=False) pt_x_in_zeros = Variable(torch.from_numpy(x_in_zeros).float(), requires_grad=False) pt_t_in_var = Variable(torch.from_numpy(t_in_var).float(), requires_grad=False) pt_u_in_zeros = Variable(torch.from_numpy(u_in_zeros).float(), requires_grad=False) # 求边界条件的损失 net_bc_right = net(torch.cat([pt_x_in_zeros, pt_t_in_var], 1)) # u(0,t)的输出 mse_u_2 = mse_cost_function(net_bc_right, pt_u_in_zeros) # e = 0-u(0,t) 公式(2) net_bc_left = net(torch.cat([pt_x_in_pos_one, pt_t_in_var], 1)) # u(1,t)的输出 mse_u_3 = mse_cost_function(net_bc_left, pt_u_in_zeros) x_0 = torch.cat([pt_x_in_zeros, pt_t_in_var], 1) x_1 = torch.cat([pt_x_in_pos_one, pt_t_in_var], 1) pt_x_0 = x_0.detach().requires_grad_(True) pt_x_1 = x_1.detach().requires_grad_(True) net_bc_right.requires_grad_(True) net_bc_left.requires_grad_(True) u_x_0 = torch.autograd.grad(net_bc_right, pt_x_0, grad_outputs=torch.ones_like(net_bc_right), create_graph=True, allow_unused=True)[0][:, 0].unsqueeze(-1) u_x_1 = torch.autograd.grad(net_bc_left, pt_x_1, grad_outputs=torch.ones_like(net_bc_left), create_graph=True, allow_unused=True)[0][:, 0].unsqueeze(-1) u_xx_0 = torch.autograd.grad(u_x_0, pt_x_0, grad_outputs=torch.ones_like(u_x_0), create_graph=True, allow_unused=True)[0][:, 0].unsqueeze(-1) u_xx_1 = torch.autograd.grad(u_x_1, pt_x_1, grad_outputs=torch.ones_like(u_x_1), create_graph=True, allow_unused=True)[0][:, 0].unsqueeze(-1)这串代码有什么问题吗?该怎么解决
这段代码没有明显的语法问题,但是有可能会导致梯度计算的错误,因为在计算 u_x_0, u_x_1, u_xx_0, u_xx_1 的时候,使用了 detach() 方法,这会使得计算图中的某些节点与原来的计算图断开,从而导致梯度无法传递到这些节点,进而影响到 u 的梯度计算。为了解决这个问题,可以使用 retain_graph=True 参数来保留计算图,或者在计算 u_x_0, u_x_1, u_xx_0, u_xx_1 的时候不使用 detach() 方法。
1.创建一些随机数据,并将其转换为Tensor类型 随机数据代码: np.random.seed(0) X = np.random.randn(100, 2) Y = np.zeros((100,)) Y[X[:,0] + X[:,1] > 0] = 1 2.定义一个逻辑回归模型(使用nn.Linear作为线性层,使用torch.sigmoid作为激活函数); 3.定义损失函数(使用二元交叉熵损失函数)和优化器(使用随机梯度下降法); 4.将模型训练指定轮数,每轮进行前向传播、反向传播和参数更新,并输出损失函数值; 5.输出模型参数并可视化结果。
好的,以下是代码实现:
```python
import torch
import numpy as np
# 创建随机数据
np.random.seed(0)
X = np.random.randn(100, 2)
Y = np.zeros((100,))
Y[X[:,0] + X[:,1] > 0] = 1
# 转换数据为Tensor类型
X = torch.tensor(X).float()
Y = torch.tensor(Y).float()
# 定义逻辑回归模型
class LogisticRegression(torch.nn.Module):
def __init__(self, input_size):
super(LogisticRegression, self).__init__()
self.linear = torch.nn.Linear(input_size, 1)
self.sigmoid = torch.nn.Sigmoid()
def forward(self, x):
x = self.linear(x)
x = self.sigmoid(x)
return x
# 实例化模型
model = LogisticRegression(2)
# 定义损失函数和优化器
criterion = torch.nn.BCELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
# 训练模型
num_epochs = 100
for epoch in range(num_epochs):
# 前向传播
outputs = model(X)
# 计算损失函数值
loss = criterion(outputs, Y)
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))
# 反向传播和参数更新
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 输出模型参数
print('Model parameters:')
for name, param in model.named_parameters():
if param.requires_grad:
print(name, param.data)
# 可视化结果
import matplotlib.pyplot as plt
plt.scatter(X[:, 0], X[:, 1], c=Y)
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = torch.meshgrid(torch.linspace(x_min, x_max, 100), torch.linspace(y_min, y_max, 100))
Z = model(torch.cat((xx.reshape(-1,1), yy.reshape(-1,1)), dim=1)).detach().reshape(xx.shape)
plt.contour(xx, yy, Z, levels=[0.5])
plt.show()
```
运行代码后,会输出每轮训练的损失函数值和最终的模型参数,最后会可视化结果。
阅读全文