用 PINN(Physics-Informed Neural Networks)求解二阶Diffusion方程的PyTorch 代码
时间: 2024-03-26 20:42:28 浏览: 387
基于PINN物理信息网络结合求解瞬态薛定谔方程(python)
5星 · 资源好评率100%
好的,以下是用 PINN 求解二阶 Diffusion 方程的 PyTorch 代码:
```python
import torch
import numpy as np
import matplotlib.pyplot as plt
# 定义求解区域的左右边界
x_left = 0.0
x_right = 1.0
# 定义时间和空间步长
delta_t = 0.001
delta_x = 0.05
# 定义神经网络的输入维度和隐藏层维度
input_dim = 2
hidden_dim = 10
# 定义神经网络的输出维度
output_dim = 1
# 定义 Diffusion 方程的初始条件和边界条件
def u_init(x):
return np.sin(np.pi * x)
def u_left(t):
return 0.0
def u_right(t):
return 0.0
# 定义神经网络模型
class PINN(torch.nn.Module):
def __init__(self):
super(PINN, self).__init__()
self.fc1 = torch.nn.Linear(input_dim, hidden_dim)
self.fc2 = torch.nn.Linear(hidden_dim, hidden_dim)
self.fc3 = torch.nn.Linear(hidden_dim, output_dim)
def forward(self, x, t):
# 拼接时间和空间坐标作为神经网络的输入
xt = torch.cat([x, t], dim=1)
h1 = torch.tanh(self.fc1(xt))
h2 = torch.tanh(self.fc2(h1))
out = self.fc3(h2)
return out
# 定义 PINN 的损失函数
def pinn_loss(model, x_left, x_right, delta_t, delta_x):
# 定义空间和时间的网格
x = torch.linspace(x_left, x_right, int((x_right - x_left) / delta_x) + 1).unsqueeze(1)
t = torch.linspace(0, 1, int(1 / delta_t) + 1).unsqueeze(1)
# 计算模型在内部网格点上的预测值
x_internal = x[1:-1]
t_internal = t[1:-1]
u_internal = model(x_internal, t_internal)
# 计算模型在左右边界上的预测值
u_left_boundary = model(x_left, t_internal)
u_right_boundary = model(x_right, t_internal)
# 计算初始条件和边界条件的损失
init_loss = torch.mean((model(x, torch.zeros_like(x)) - u_init(x)) ** 2)
left_boundary_loss = torch.mean((u_left_boundary - u_left(t_internal)) ** 2)
right_boundary_loss = torch.mean((u_right_boundary - u_right(t_internal)) ** 2)
# 计算 Diffusion 方程的残差
u_x = torch.autograd.grad(u_internal, x_internal, grad_outputs=torch.ones_like(u_internal), create_graph=True)[0]
u_xx = torch.autograd.grad(u_x, x_internal, grad_outputs=torch.ones_like(u_x), create_graph=True)[0]
f = u_xx - (1 / delta_t) * (u_internal - u_init(x_internal))
# 计算残差的损失
residual_loss = torch.mean(f ** 2)
# 计算总的损失
loss = init_loss + left_boundary_loss + right_boundary_loss + residual_loss
return loss
# 初始化神经网络模型和优化器
model = PINN()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# 训练神经网络模型
for i in range(10000):
optimizer.zero_grad()
loss = pinn_loss(model, x_left, x_right, delta_t, delta_x)
loss.backward()
optimizer.step()
if i % 1000 == 0:
print("Iteration {}, Loss = {}".format(i, loss.item()))
# 使用训练好的神经网络模型进行预测
x_test = torch.linspace(x_left, x_right, 101).unsqueeze(1)
t_test = torch.linspace(0, 1, 1001).unsqueeze(1)
u_test = model(x_test, t_test).detach().numpy()
# 绘制预测结果
X, T = np.meshgrid(x_test, t_test)
plt.pcolormesh(X, T, u_test, cmap='coolwarm')
plt.colorbar()
plt.xlabel("x")
plt.ylabel("t")
plt.title("PINN Solution to Diffusion Equation")
plt.show()
```
这段代码中,首先定义了求解区域的左右边界、时间和空间步长等参数,然后定义了 Diffusion 方程的初始条件和边界条件,以及神经网络模型和损失函数。在训练神经网络模型时,使用了 Adam 优化器,最后使用训练好的模型进行预测,并绘制了预测结果。
阅读全文