flatten data from (n,1,28,28) to (n, 784)
时间: 2024-09-25 10:07:39 浏览: 32
数据扁平化是从形状为 (n, 1, 28, 28) 的四维数组转换到 (n, 784) 形状的过程。在图像处理或深度学习中,特别是卷积神经网络(CNN)中,每个像素通常会被组织成一个二维矩阵(28x28)。在这个结构中:
- 第一个维度 `n` 表示样本数;
- 第二、三、四个维度分别代表宽度(28)、高度(28)和单色通道(通常是1,因为灰度图),对于彩色图片可能是3。
为了将数据输入全连接层,需要展平这三维数据,去掉宽度和高度,只保留每个像素值作为一个单独的一维向量。所以,我们将每张28x28大小的图片扁平化为一个长度为784(=28 * 28)的一维向量。这种操作可以方便地将其视为一列,便于计算。
例如,在Python中,你可以使用NumPy库的reshape函数或者直接通过列表推导式来完成这个过程:
```python
import numpy as np
# 假设input_data是一个(n, 1, 28, 28)的numpy数组
flattened_data = input_data.reshape(input_data.shape[0], -1)
```
这里 `-1` 表示最后一个维度将会自动调整以保持总元素数量不变。
相关问题
解释下列代码# -*- coding: gbk-*- import numpy as np import pandas as pd header = ['user_id', 'item_id', 'rating', 'timestamp'] with open("u.data", "r") as file_object: df = pd.read_csv(file_object, sep='\t', names=header) print(df) n_users = df.user_id.unique().shape[0] n_items = df.item_id.unique().shape[0] print('Number of users = ' + str(n_users) + ' | Number of movies =' + str(n_items)) from sklearn.model_selection import train_test_split train_data, test_data = train_test_split(df, test_size=0.2, random_state=21) train_data_matrix = np.zeros((n_users, n_items)) for line in train_data.itertuples(): train_data_matrix[line[1] - 1, line[2] -1] = line[3] test_data_matrix = np.zeros((n_users, n_items)) for line in test_data.itertuples(): test_data_matrix[line[1] - 1, line[2] - 1] = line[3] print(train_data_matrix.shape) print(test_data_matrix.shape) from sklearn.metrics.pairwise import cosine_similarity item_similarity = cosine_similarity(train_data_matrix.T) print(u" 物品相似度矩阵 :", item_similarity.shape) print(u"物品相似度矩阵: ", item_similarity) def predict(ratings, similarity, type): # 基于物品相似度矩阵的 if type == 'item': pred = ratings.dot(similarity) / np.array([np.abs(similarity).sum(axis=1)]) print(u"预测值: ", pred.shape) return pred # 预测结果 item_prediction = predict(train_data_matrix, item_similarity, type='item') print(item_prediction) from sklearn.metrics import mean_squared_error from math import sqrt def rmse(prediction, ground_truth): prediction = prediction[ground_truth.nonzero()].flatten() ground_truth = ground_truth[ground_truth.nonzero()].flatten() return sqrt(mean_squared_error(prediction, ground_truth)) item_prediction = np.nan_to_num(item_prediction) print('Item-based CF RMSE: ' + str(rmse(item_prediction, test_data_matrix)))
这段代码主要是实现了基于物品相似度矩阵的推荐系统,具体流程如下:
1. 读取 u.data 数据集文件,用 pandas 库将其转换成 DataFrame 格式,并输出该数据集;
2. 计算该数据集中有多少个用户和多少个物品;
3. 将数据集分为训练集和测试集,其中训练集占 80%;
4. 构建训练集和测试集的评分矩阵,其中行表示用户,列表示物品,值表示评分;
5. 计算物品相似度矩阵,这里使用了 sklearn 库中的 cosine_similarity 方法;
6. 基于物品相似度矩阵,预测测试集中每个用户对每个物品的评分;
7. 计算预测结果与真实评分之间的均方根误差(RMSE),用于评估模型的性能。
需要注意的是,该代码只实现了基于物品相似度矩阵的推荐系统,还可以尝试其他的推荐算法,比如基于用户相似度矩阵的推荐系统。此外,还可以对模型进行参数调优,以获得更好的性能。
import pandas as pd import numpy as np import matplotlib.pyplot as plt from keras.models import Model, Input from keras.layers import Conv1D, BatchNormalization, Activation, Add, Flatten, Dense from keras.optimizers import Adam # 读取CSV文件 data = pd.read_csv("3c_left_1-6.csv", header=None) # 将数据转换为Numpy数组 data = data.values # 定义输入形状 input_shape = (data.shape[1], 1) # 定义深度残差网络 def residual_network(inputs): # 第一层卷积层 x = Conv1D(32, 3, padding="same")(inputs) x = BatchNormalization()(x) x = Activation("relu")(x) # 残差块 for i in range(5): y = Conv1D(32, 3, padding="same")(x) y = BatchNormalization()(y) y = Activation("relu")(y) y = Conv1D(32, 3, padding="same")(y) y = BatchNormalization()(y) y = Add()([x, y]) x = Activation("relu")(y) # 全局池化层和全连接层 x = Flatten()(x) x = Dense(128, activation="relu")(x) x = Dense(data.shape[1], activation="linear")(x) outputs = Add()([x, inputs]) return outputs # 构建模型 inputs = Input(shape=input_shape) outputs = residual_network(inputs) model = Model(inputs=inputs, outputs=outputs) # 编译模型 model.compile(loss="mean_squared_error", optimizer=Adam()) # 训练模型 model.fit(data[..., np.newaxis], data[..., np.newaxis], epochs=100) # 预测数据 predicted_data = model.predict(data[..., np.newaxis]) predicted_data = np.squeeze(predicted_data) # 可视化去噪前后的数据 fig, axs = plt.subplots(3, 1, figsize=(12, 8)) for i in range(3): axs[i].plot(data[:, i], label="Original Signal") axs[i].plot(predicted_data[:, i], label="Denoised Signal") axs[i].legend() plt.savefig("denoised_signal.png") # 将去噪后的数据保存为CSV文件 df = pd.DataFrame(predicted_data, columns=["x", "y", "z"]) df.to_csv("denoised_data.csv", index=False)报错为Traceback (most recent call last): File "G:\project2\main.py", line 51, in <module> model.fit(data[..., np.newaxis], data[..., np.newaxis], epochs=100) File "G:\python\envs\tensorflow\lib\site-packages\keras\engine\training.py", line 1154, in fit batch_size=batch_size) File "G:\python\envs\tensorflow\lib\site-packages\keras\engine\training.py", line 621, in _standardize_user_data exception_prefix='target') File "G:\python\envs\tensorflow\lib\site-packages\keras\engine\training_utils.py", line 145, in standardize_input_data str(data_shape)) ValueError: Error when checking target: expected add_6 to have shape (3, 3) but got array with shape (3, 1)
这错误提示表明,模型的输出形状是 (3, 3),而你的目标数据的形状是 (3, 1)。这可能是由于你的目标数据的维度不正确导致的。在这种情况下,你可以尝试将目标数据的维度更改为 (n, 3, 1),其中 n 是样本数。你可以使用 np.newaxis 命令来添加一个新维度,例如:
```
model.fit(data[..., np.newaxis], data[..., np.newaxis], epochs=100)
```
可以将其修改为:
```
model.fit(data[..., np.newaxis], data[..., np.newaxis, np.newaxis], epochs=100)
```
这将为目标数据添加一个新的维度,使其形状变为 (n, 3, 1)。
阅读全文