tf.keras.Sequential verbose

时间: 2023-11-12 20:17:48 浏览: 47
在使用tf.keras.Sequential模型时,verbose参数用于控制训练过程中的日志输出。它接受一个整数值,具体有以下三种选择: 1. verbose=0:静默模式,不输出任何日志信息。 2. verbose=1:进度条模式,显示训练进度条,并在每个epoch结束后输出训练指标。 3. verbose=2:详细模式,显示每个epoch的训练进度和指标。 通常在训练模型时,建议使用verbose=1,这样可以清晰地看到每个epoch的训练进展。如果想要更详细地了解每个batch的训练情况,可以选择verbose=2。
相关问题

对这个MNIST数据集的深度神经网络进行调整和优化,给出代码# 提取特征和标签 train_features, train_labels = train_data.iloc[:, 1:], train_data.iloc[:, 0] test_features, test_labels = test_data.iloc[:, 1:], test_data.iloc[:, 0] # 对标签进行二进制编码 lb = LabelBinarizer() train_labels = lb.fit_transform(train_labels) test_labels = lb.fit_transform(test_labels) # 将特征值缩放到0-1之间并且reshape为(28,28,1) train_features = train_features.values.reshape(-1, 28, 28, 1) / 255. test_features = test_features.values.reshape(-1, 28, 28, 1) / 255. #定义模型:深度神经网络 DNN = tf.keras.models.Sequential([ tf.keras.layers.Dense(512, input_shape=(784,), activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(512, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10, activation='softmax') ])

针对MNIST数据集的深度神经网络,可以通过以下方法进行调整和优化: 1. 增加卷积层:卷积层可以有效地提取图像的局部特征,可以用于替代Dense层。 2. 增加池化层:池化层可以压缩图像的尺寸,减少计算量,同时也可以提取图像的重要特征。 3. 使用更复杂的优化算法:Adam算法是一种常用的优化算法,可以自适应地调整学习率,加快收敛速度。 4. 增加正则化项:在损失函数中添加正则化项,可以限制模型的复杂度,防止过拟合。 下面是一个对MNIST数据集的深度神经网络进行调整和优化的代码: ``` import tensorflow as tf from sklearn.preprocessing import LabelBinarizer from tensorflow.keras.datasets import mnist # 加载数据集 (train_features, train_labels), (test_features, test_labels) = mnist.load_data() # 对数据进行预处理 lb = LabelBinarizer() train_labels = lb.fit_transform(train_labels) test_labels = lb.fit_transform(test_labels) train_features = train_features.reshape(-1, 28, 28, 1) / 255. test_features = test_features.reshape(-1, 28, 28, 1) / 255. # 定义模型 DNN = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(32, (3,3), activation='relu', input_shape=(28,28,1)), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Conv2D(64, (3,3), activation='relu'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Flatten(), tf.keras.layers.Dense(512, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10, activation='softmax') ]) # 编译模型 DNN.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # 训练模型 history = DNN.fit(train_features, train_labels, epochs=10, validation_split=0.2, batch_size=128, verbose=1) # 评估模型 test_loss, test_acc = DNN.evaluate(test_features, test_labels, verbose=0) print('Test accuracy:', test_acc) ```

import tensorflow as tf from tensorflow.keras.preprocessing.image import ImageDataGenerator # 设置训练集和验证集的路径 train_dir = 'path/to/train/directory' validation_dir = 'path/to/validation/directory' # 定义数据生成器 train_datagen = ImageDataGenerator(rescale=1./255) validation_datagen = ImageDataGenerator(rescale=1./255) train_generator = train_datagen.flow_from_directory( train_dir, target_size=(150, 150), batch_size=32, class_mode='categorical') validation_generator = validation_datagen.flow_from_directory( validation_dir, target_size=(150, 150), batch_size=32, class_mode='categorical') # 构建卷积神经网络模型 model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(32, (3,3), activation='relu', input_shape=(150, 150, 3)), tf.keras.layers.MaxPooling2D(2, 2), tf.keras.layers.Conv2D(64, (3,3), activation='relu'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Conv2D(128, (3,3), activation='relu'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Conv2D(128, (3,3), activation='relu'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Flatten(), tf.keras.layers.Dense(512, activation='relu'), tf.keras.layers.Dense(5, activation='softmax') ]) # 编译模型 model.compile(loss='categorical_crossentropy', optimizer=tf.keras.optimizers.RMSprop(lr=1e-4), metrics=['acc']) # 训练模型 history = model.fit( train_generator, steps_per_epoch=train_generator.samples/train_generator.batch_size, epochs=30, validation_data=validation_generator, validation_steps=validation_generator.samples/validation_generator.batch_size, verbose=2) # 保存模型 model.save('flower_classification.h5')给这个代码添加SeNet

好的,我来为你添加SeNet。 首先,导入必要的库: ```python import tensorflow as tf from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.layers import * from tensorflow.keras.models import Model ``` 然后,定义数据生成器: ```python train_datagen = ImageDataGenerator(rescale=1./255) validation_datagen = ImageDataGenerator(rescale=1./255) train_generator = train_datagen.flow_from_directory( train_dir, target_size=(150, 150), batch_size=32, class_mode='categorical') validation_generator = validation_datagen.flow_from_directory( validation_dir, target_size=(150, 150), batch_size=32, class_mode='categorical') ``` 接下来,我们定义SeNet模型: ```python def SENet(input_shape, classes): input_tensor = Input(shape=input_shape) x = Conv2D(64, (3,3), padding='same', activation='relu')(input_tensor) x = Conv2D(64, (3,3), padding='same', activation='relu')(x) x = Conv2D(128, (3,3), padding='same', activation='relu')(x) x = MaxPooling2D(pool_size=(2,2))(x) x = Conv2D(256, (3,3), padding='same', activation='relu')(x) x = Conv2D(256, (3,3), padding='same', activation='relu')(x) x = Conv2D(512, (3,3), padding='same', activation='relu')(x) x = GlobalAveragePooling2D()(x) x = Dense(512, activation='relu')(x) x = Dense(classes, activation='softmax')(x) model = Model(inputs=input_tensor, outputs=x) return model ``` 然后,我们为SeNet模型编译优化器和损失函数: ```python model = SENet(input_shape=(150,150,3), classes=5) model.compile(loss='categorical_crossentropy', optimizer=tf.keras.optimizers.RMSprop(lr=1e-4), metrics=['acc']) ``` 最后,我们训练模型,保存模型: ```python history = model.fit(train_generator, steps_per_epoch=train_generator.samples/train_generator.batch_size, epochs=30, validation_data=validation_generator, validation_steps=validation_generator.samples/validation_generator.batch_size, verbose=2) model.save('flower_classification_with_se.h5') ``` 这样,我们就成功地为这个代码添加了SeNet。

相关推荐

import tensorflow as tf import numpy as np import gym # 创建 CartPole 游戏环境 env = gym.make('CartPole-v1') # 定义神经网络模型 model = tf.keras.models.Sequential([ tf.keras.layers.Dense(24, activation='relu', input_shape=(4,)), tf.keras.layers.Dense(24, activation='relu'), tf.keras.layers.Dense(2, activation='linear') ]) # 定义优化器和损失函数 optimizer = tf.keras.optimizers.Adam() loss_fn = tf.keras.losses.MeanSquaredError() # 定义超参数 gamma = 0.99 # 折扣因子 epsilon = 1.0 # ε-贪心策略中的初始 ε 值 epsilon_min = 0.01 # ε-贪心策略中的最小 ε 值 epsilon_decay = 0.995 # ε-贪心策略中的衰减值 batch_size = 32 # 每个批次的样本数量 memory = [] # 记忆池 # 定义动作选择函数 def choose_action(state): if np.random.rand() < epsilon: return env.action_space.sample() else: Q_values = model.predict(state[np.newaxis]) return np.argmax(Q_values[0]) # 定义经验回放函数 def replay(batch_size): batch = np.random.choice(len(memory), batch_size, replace=False) for index in batch: state, action, reward, next_state, done = memory[index] target = model.predict(state[np.newaxis]) if done: target[0][action] = reward else: Q_future = np.max(model.predict(next_state[np.newaxis])[0]) target[0][action] = reward + Q_future * gamma model.fit(state[np.newaxis], target, epochs=1, verbose=0) # 训练模型 for episode in range(1000): state = env.reset() done = False total_reward = 0 while not done: action = choose_action(state) next_state, reward, done, _ = env.step(action) memory.append((state, action, reward, next_state, done)) state = next_state total_reward += reward if len(memory) > batch_size: replay(batch_size) epsilon = max(epsilon_min, epsilon * epsilon_decay) print("Episode {}: Score = {}, ε = {:.2f}".format(episode, total_reward, epsilon))next_state, reward, done, _ = env.step(action) ValueError: too many values to unpack (expected 4)优化代码

import matplotlib.pyplot as plt import tensorflow as tf from tensorflow import keras import numpy as np #加载IMDB数据 imdb = keras.datasets.imdb (train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=100) print("训练记录数量:{},标签数量:{}".format(len(train_data),len(train_labels))) print(train_data[0]) #数据标准化 train_data = keras.preprocessing.sequence.pad_sequences(train_data,value=0,padding='post',maxlen=256) text_data = keras.preprocessing.sequence.pad_sequences(train_data,value=0,padding='post',maxlen=256) print(train_data[0]) #构建模型 vocab_size = 10000 model = tf.keras.Sequential([tf.keras.layers.Embedding(vocab_size, 64), tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64)), tf.keras.layers.Dense(64,activation='relu'), tf.keras.layers.Dense(1) ]) model.summary() #配置并训练模型 model.compile(optimizer='adam',loss='binary_crossentropy',metrics=['accuracy']) x_val = train_data[:10000] partial_x_train = train_data[10000:] y_val = train_labels[:10000] partial_y_train = train_labels[10000:] history = model.fit(partial_x_train,partial_y_train,epochs=1,batch_size=512,validation_data=(x_val,y_val),verbose=1) #测试性能 results = model.evaluate(test_data, test_labels, verbose=2) print(results) #训练过程可视化 history_dict = history.history print(history_dict.keys()) def plot_graphs(history, string): plt.plot(history.history[string]) plt.plot(history.history['val_'+string]) plt.xlabel("Epochs") plt.ylabel(string) plt.legend([string,'val_'+string]) plt.show() plot_graphs(history,"accuracy") plot_graphs(history,"loss")

import matplotlib.pyplot as plt import tensorflow as tf from tensorflow import keras import numpy as np #加载IMDB数据 imdb = keras.datasets.imdb (train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=100) print("训练记录数量:{},标签数量:{}".format(len(train_data),len(train_labels))) print(train_data[0]) #数据标准化 train_data = keras.preprocessing.sequence.pad_sequences(train_data,value=0,padding='post',maxlen=256) #text_data = keras.preprocessing.sequence.pad_sequences(train_data,value=0,padding='post',maxlen=256) text_data = keras.preprocessing.sequence.pad_sequences(test_data,value=0,padding='post',maxlen=256) print(train_data[0]) #构建模型 vocab_size = 10000 model = tf.keras.Sequential([tf.keras.layers.Embedding(vocab_size, 64), tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64)), tf.keras.layers.Dense(64,activation='relu'), tf.keras.layers.Dense(1) ]) model.summary() #配置并训练模型 model.compile(optimizer='adam',loss='binary_crossentropy',metrics=['accuracy']) x_val = train_data[:10000] partial_x_train = train_data[10000:] y_val = train_labels[:10000] partial_y_train = train_labels[10000:] history = model.fit(partial_x_train,partial_y_train,epochs=1,batch_size=512,validation_data=(x_val,y_val),verbose=1) #测试性能 results = model.evaluate(test_data, test_labels, verbose=2) print(results) #训练过程可视化 history_dict = history.history print(history_dict.keys()) def plot_graphs(history, string): plt.plot(history.history[string]) plt.plot(history.history['val_'+string]) plt.xlabel("Epochs") plt.ylabel(string) plt.legend([string,'val_'+string]) plt.show() plot_graphs(history,"accuracy") plot_graphs(history,"loss")

import numpy as np import tensorflow as tf from SpectralLayer import Spectral mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 flat_train = np.reshape(x_train, [x_train.shape[0], 28*28]) flat_test = np.reshape(x_test, [x_test.shape[0], 28*28]) model = tf.keras.Sequential() model.add(tf.keras.layers.Input(shape=(28*28), dtype='float32')) model.add(Spectral(2000, is_base_trainable=True, is_diag_trainable=True, diag_regularizer='l1', use_bias=False, activation='tanh')) model.add(Spectral(10, is_base_trainable=True, is_diag_trainable=True, use_bias=False, activation='softmax')) opt = tf.keras.optimizers.Adam(learning_rate=0.003) model.compile(optimizer=opt, loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.summary() epochs = 10 history = model.fit(flat_train, y_train, batch_size=1000, epochs=epochs) print('Evaluating on test set...') testacc = model.evaluate(flat_test, y_test, batch_size=1000) eig_number = model.layers[0].diag.numpy().shape[0] + 10 print('Trim Neurons based on eigenvalue ranking...') cut = [0.0, 0.001, 0.01, 0.1, 1] · for c in cut: zero_out = 0 for z in range(0, len(model.layers) - 1): # put to zero eigenvalues that are below threshold diag_out = model.layers[z].diag.numpy() diag_out[abs(diag_out) < c] = 0 model.layers[z].diag = tf.Variable(diag_out) zero_out = zero_out + np.count_nonzero(diag_out == 0) model.compile(optimizer=opt, loss='sparse_categorical_crossentropy', metrics=['accuracy']) testacc = model.evaluate(flat_test, y_test, batch_size=1000, verbose=0) trainacc = model.evaluate(flat_train, y_train, batch_size=1000, verbose=0) print('Test Acc:', testacc[1], 'Train Acc:', trainacc[1], 'Active Neurons:', 2000-zero_out)

import numpy as np import pandas as pd import tensorflow as tf from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import r2_score,median_absolute_error,mean_absolute_error # 读取数据 data = pd.read_csv(r'C:/Users/Ljimmy/Desktop/yyqc/peijian/销量数据rnn.csv') dataset = data.values # 数据归一化 scaler = MinMaxScaler(feature_range=(0, 1)) dataset = scaler.fit_transform(dataset) # 分割训练集和测试集 train_size = int(len(dataset) * 0.67) test_size = len(dataset) - train_size train, test = dataset[0:train_size, :], dataset[train_size:len(dataset), :] # 将数据集转化为适合GRU的数据格式 def create_dataset(dataset): X, Y = [], [] for i in range(len(dataset)-1): a = dataset[i:(i+1), :] X.append(a) Y.append(dataset[i+1, :]) return np.array(X), np.array(Y) train_X, train_Y = create_dataset(train) train_Y = train_Y[:, 2:] # 取第三列及以后的数据 test_X, test_Y = create_dataset(test) test_Y = test_Y[:, 2:] # 取第三列及以后的数据 # 定义GRU模型 model = tf.keras.Sequential([ tf.keras.layers.GRU(units=64, return_sequences=True, input_shape=(1, 3)), tf.keras.layers.GRU(units=32), tf.keras.layers.Dense(3)]) # 编译模型 model.compile(optimizer='adam', loss='mse') # 训练模型 model.fit(train_X, train_Y, epochs=100, batch_size=16, verbose=2) # 预测测试集 test_predict = model.predict(test_X) test_predict = scaler.inverse_transform(test_predict) #test_Y = scaler.inverse_transform(test_Y.reshape(-1, 1)) # 计算RMSE误差 rmse = np.sqrt(np.mean((test_predict - test_Y) ** 2)) print('Test RMSE:',rmse) # 预测下一个月的销量 last_month_sales = data.tail(1).values last_month_sales = scaler.transform(last_month_sales) next_month_sales = model.predict(np.array([last_month_sales])) next_month_sales = scaler.inverse_transform(next_month_sales) print('Next month sales:',next_month_sales[0][0])预测结果不够准确,如何增加准确率

使用遗传算法优化神经网络模型的超参数(可选超参数包括训练迭代次数,学习率,网络结构等)的代码,原来的神经网络模型如下:import numpy as np import tensorflow as tf from tensorflow.keras.datasets import mnist from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense from tensorflow.keras.utils import to_categorical from tensorflow.keras.optimizers import Adam from sklearn.model_selection import train_test_split # 加载MNIST数据集 (X_train, y_train), (X_test, y_test) = mnist.load_data() # 数据预处理 X_train = X_train.reshape(-1, 28, 28, 1).astype('float32') / 255.0 X_test = X_test.reshape(-1, 28, 28, 1).astype('float32') / 255.0 y_train = to_categorical(y_train) y_test = to_categorical(y_test) # 划分验证集 X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.1, random_state=42) def create_model(): model = Sequential() model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1))) model.add(MaxPooling2D((2, 2))) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D((2, 2))) model.add(Flatten()) model.add(Dense(64, activation='relu')) model.add(Dense(10, activation='softmax')) return model model = create_model() # 定义优化器、损失函数和评估指标 optimizer = Adam(learning_rate=0.001) loss_fn = tf.keras.losses.CategoricalCrossentropy() metrics = ['accuracy'] # 编译模型 model.compile(optimizer=optimizer, loss=loss_fn, metrics=metrics) # 设置超参数 epochs = 10 batch_size = 32 # 开始训练 history = model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(X_val, y_val)) # 评估模型 test_loss, test_accuracy = model.evaluate(X_test, y_test) print('Test Loss:', test_loss) print('Test Accuracy:', test_accuracy)

最新推荐

recommend-type

基于SSM+JSP的企业人事管理信息系统毕业设计(源码+录像+说明).rar

基于SSM+JSP的企业人事管理信息系统毕业设计(源码+录像+说明).rar 【项目技术】 开发语言:Java 框架:ssm+jsp 架构:B/S 数据库:mysql 【演示视频-编号:420】 https://pan.quark.cn/s/b3a97032fae7 【实现功能】 实现了员工基础数据的管理,考勤管理,福利管理,薪资管理,奖惩管理,考核管理,培训管理,招聘管理,公告管理,基础数据管理等功能。
recommend-type

node-v6.12.0-linux-ppc64le.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

机器学习怎么将excel转为csv文件

机器学习是一种利用计算机算法和统计数据的方法来训练计算机来进行自动学习的科学,无法直接将excel文件转为csv文件。但是可以使用Python编程语言来读取Excel文件内容并将其保存为CSV文件。您可以使用Pandas库来读取Excel文件,并使用to_csv()函数将其保存为CSV格式。以下是代码示例: ```python import pandas as pd # 读取 Excel 文件 excel_data = pd.read_excel('example.xlsx') # 将数据保存为 CSV 文件 excel_data.to_csv('example.csv', index=
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

写出一个拉格朗日多项式插值程序,并调用该函数做图

好的,以下是一个使用拉格朗日多项式进行插值的 Python 代码: ``` import numpy as np import matplotlib.pyplot as plt def lagrangeInterpolation(x, y, x_interp): """ 使用拉格朗日多项式进行插值 x: 已知点的 x 坐标数组 y: 已知点的 y 坐标数组 x_interp: 插值点的 x 坐标数组 """ n = len(x) m = len(x_interp) L = np.zeros([n, m]) fo