解决八数码难题的Python代码
时间: 2024-05-24 09:08:12 浏览: 94
八数码难题是一种经典的人工智能问题,可以使用搜索算法来解决。以下是一个使用A*算法来解决八数码难题的Python代码实现:
```
import heapq
# 定义状态类
class State:
def __init__(self, board, moves, manhattan):
self.board = board # 当前状态的棋盘
self.moves = moves # 当前状态的步数
self.manhattan = manhattan # 当前状态的曼哈顿距离
# 定义小于号操作符,用于堆排序
def __lt__(self, other):
return (self.moves + self.manhattan) < (other.moves + other.manhattan)
# 定义曼哈顿距离函数
def manhattan(board):
distance = 0
for i in range(3):
for j in range(3):
if board[i][j] != 0:
row = (board[i][j] - 1) // 3
col = (board[i][j] - 1) % 3
distance += abs(row - i) + abs(col - j)
return distance
# 定义状态转移函数
def move(board, i1, j1, i2, j2):
new_board = []
for i in range(3):
row = []
for j in range(3):
row.append(board[i][j])
new_board.append(row)
new_board[i1][j1], new_board[i2][j2] = new_board[i2][j2], new_board[i1][j1]
return new_board
# 定义A*算法求解函数
def solve(initial_board):
heap = []
heapq.heappush(heap, State(initial_board, 0, manhattan(initial_board)))
while heap:
state = heapq.heappop(heap)
if state.board == [[1, 2, 3], [4, 5, 6], [7, 8, 0]]:
return state.moves
i, j = next((i, j) for i in range(3) for j in range(3) if state.board[i][j] == 0)
for i2, j2 in ((i-1,j), (i+1,j), (i,j-1), (i,j+1)):
if 0 <= i2 < 3 and 0 <= j2 < 3:
new_board = move(state.board, i, j, i2, j2)
heapq.heappush(heap, State(new_board, state.moves+1, manhattan(new_board)))
return None
# 示例
initial_board = [[2, 8, 3], [1, 6, 4], [7, 0, 5]]
print(solve(initial_board))
```
阅读全文