img.shape=[100,256,256] img = np.rot90(img, k=3, axes=[-1,-2]) img = np.flip(img,-2)是第一个纬度下所有的图像都发生变化吗?且100张图片的旋转角度一样吗

时间: 2024-05-26 22:17:26 浏览: 58
是的,这三行代码会对第一个维度下的所有图像进行操作。 其中,`np.rot90(img, k=3, axes=[-1,-2])` 会将每个图像沿着第二个维度(256)和第三个维度(256)逆时针旋转90度,相当于将图像顺时针旋转270度。 `np.flip(img,-2)` 则会将每个图像沿着第二个维度(256)翻转,相当于将图像上下颠倒。 这些操作对于每个图像都是相同的,因此所有的图像都会被旋转和翻转。旋转的角度是90度,因为 `k=3`,即逆时针旋转3次等价于顺时针旋转270度。
相关问题

img.shape=[100,256,256] img = np.rot90(img, k=2, axes=[-1,-2])

这段代码将一个形状为 [100, 256, 256] 的三维数组 img 沿着第二个和第三个维度(即索引为 1 和 2 的维度)进行了旋转操作,旋转的角度为 180 度,也就是将图像上下翻转,并左右翻转。其中,k=2 表示旋转 180 度,axes=[-1,-2] 表示按照最后一个维度和倒数第二个维度进行旋转。旋转后的数组形状仍为 [100, 256, 256],但图像内容发生了变化。

1920x1080的图片 ediapipe坐标x=0.546142y = 0.315784z = -0.148612,ue5骨骼起始坐标起始坐标 P = 3.283828 Y = -91.575178 R = 127.023765 ue5骨骼向前向量 X=-0.027 Y=-0.998 Z=0.057 如何机选骨骼旋转坐标

要将一张图片的坐标转换到UE5骨骼的旋转坐标下,可以按照以下步骤进行: 1. 计算出图片坐标在UE5中的位置向量,即将图片坐标的x、y、z值乘以UE5骨骼向前向量、右向量和上向量的单位向量,加权求和得到一个位置向量。例如: ``` x = 0.546142 y = 0.315784 z = -0.148612 forward = Vector(-0.027, -0.998, 0.057).GetSafeNormal() right = Vector(0, 0, 1).CrossProduct(forward).GetSafeNormal() up = forward.CrossProduct(right) pos = forward * z + right * x + up * y ``` 2. 将该位置向量加上UE5骨骼的起始坐标,得到图片在UE5骨骼坐标系下的绝对坐标。例如: ``` start_pos = Vector(3.283828, -91.575178, 127.023765) pos_abs = start_pos + pos ``` 3. 随机生成一个旋转坐标,例如: ``` rot = Rotator(FMath::RandRange(-180.f, 180.f), FMath::RandRange(-180.f, 180.f), FMath::RandRange(-180.f, 180.f)) ``` 4. 将旋转坐标转换为旋转矩阵表示法,即: ``` m = rot.ToMatrixWithScale() ``` 5. 将UE5骨骼的起始坐标和旋转矩阵相乘,得到旋转后的坐标,即: ``` pos_rotated = start_pos + m.TransformVector(pos) ``` 得到的pos_rotated即为该图片在随机旋转后在UE5骨骼坐标系下的绝对坐标。
阅读全文

相关推荐

该代码如何使小车判断交通灯颜色,判断后又如何使小车做出相应反应?class navigation_demo: def init(self): # self.set_pose_pub = rospy.Publisher('/initialpose', PoseWithCovarianceStamped, queue_size=5) # nav 创建发布器用于发送目标位置 self.pub_goal = rospy.Publisher('/move_base_simple/goal', PoseStamped, queue_size=10) # 创建客户端,用于发送导航目标 self.move_base = actionlib.SimpleActionClient("move_base", MoveBaseAction) self.move_base.wait_for_server(rospy.Duration(60)) self.sub_socket = rospy.Subscriber('/socket', Int16, self.socket_cb) # traffic light self.sub_traffic = rospy.Subscriber('/traffic_light', Bool, self.traffic_light) # line check车道线检测信息 self.pub_line = rospy.Publisher('/detector_line',Bool,queue_size=10) # 交通灯信息 self.pub_color = rospy.Publisher('/detector_trafficlight',Bool,queue_size=10) self.pub_reached = rospy.Publisher('/reached',Bool,queue_size=10) self.sub_done = rospy.Subscriber('/done',Bool,self.done_cb) #add self.tf_listener = tf.TransformListener() # 等待map到base_link坐标系变换的建立 try: self.tf_listener.waitForTransform('map', 'base_link', rospy.Time(0), rospy.Duration(1.0)) except (tf.Exception, tf.ConnectivityException, tf.LookupException): pass print("tf point successful") #add 初始化 self.count = 0 self.judge = 0 self.start = 0 self.end = 0 self.traffic = False self.control = 0 self.step = 0 self.flage = 1 # self.done = False #add 交通灯状态 def traffic_light(self, color): self.traffic = color.data # self.traffic = True if (self.traffic == False): print ("traffic red") self.judge = 0 if (self.traffic == True): print ("traffic green") self.judge = 1 def get_pos(self,x1,y1): try: (trans, rot) = self.tf_listener.lookupTransform('map', 'base_link', rospy.Time(0)) except (tf.LookupException, tf.ConnectivityException, tf.ExtrapolationException): rospy.loginfo("tf Error") return None euler = transformations.euler_from_quaternion(rot) #print euler[2] / pi * 180 获取xy的坐标 x = trans[0] y = trans[1] # 计算当前位置与目标位置的距离 result = pow(abs(x-x1),2)+pow(abs(y-y1),2) result = sqrt(result) if (result <= 0.6):# 如果距离小于0.6,表示到达目标, return True #th = euler[2] / pi * 180 else: return False #return (x, y, th)

程序提示AttributeError: 'ImageThread' object has no attribute '_dgl',优化程序 def __init__(self, pipeline, color_label, depth_label, interval, color_photo_dir, depth_photo_dir): super().__init__() self.pipeline = pipeline self.color_label = color_label self.depth_label = depth_label self.is_running = True self.interval = interval self.color_photo_dir = color_photo_dir self.depth_photo_dir = depth_photo_dir self.saved_color_photos = 0 self.saved_depth_photos = 0 def save_photo(self, color_image, depth_image): # 保存彩色图和深度图 filename = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S-{}.bmp".format(self.saved_color_photos)) color_image.save(os.path.join(self.color_photo_dir, filename), "BMP") depth_image.save(os.path.join(self.depth_photo_dir, filename), "BMP") # print(self.color_photo_dir) # 更新已保存照片数量标签 self.saved_color_photos += 1 self.saved_depth_photos += 1 self.saved_color_photos_signal.emit(self.saved_color_photos) self.saved_depth_photos_signal.emit(self.saved_depth_photos) def run(self): ROT = 3 while self.is_running: # 从相机获取彩色图和深度图 frames = self.pipeline.wait_for_frames() color_frame = frames.get_color_frame() depth_frame = frames.get_depth_frame() depth_image = np.asanyarray(depth_frame.get_data()) color_image = np.asanyarray(color_frame.get_data()) # 转换成 Qt 图像格式 depth_colormap = cv2.applyColorMap(cv2.convertScaleAbs(depth_image, alpha=0.03), cv2.COLORMAP_JET) # 将深度图像转换为伪彩色图像 color_image = QImage(color_image, color_image.shape[1], color_image.shape[0], color_image.shape[1] * 3, QImage.Format_RGB888) depth_colormap = QImage(depth_colormap, depth_colormap.shape[1], depth_colormap.shape[0], depth_colormap.shape[1] * 3, QImage.Format_RGB888) # 显示图像 self.color_label.setPixmap(QPixmap.fromImage(color_image)) self.depth_label.setPixmap(QPixmap.fromImage(depth_colormap)) v = self._dgl.qpin(ROT) if len(v) > 0: self._count += sum(v) if self._count > self._inspect_step: self.save_photo(color_image, depth_colormap) self._count -= self._inspect_step

最新推荐

recommend-type

Alphacam后处理详解-自修改版本.doc

Use [T] for current tool number if required.$75 "主轴顺转的指令码"Code for CLOCKWISE spindle rotation - entered into variable ROT (or RT) 3$76 "主轴逆转的指令码" Code for COUNTER-CLOCKWISE spindle ...
recommend-type

LPC55S1x_LPC551x Data Sheet中文版.docx

3. **内存配置**:拥有高达256KB的片上闪存,带有闪存加速器和512字节的页擦写功能,96KB的SRAM分为不同的部分以满足不同需求,包括16KB的代码总线SRAM,64KB连续的系统总线SRAM,以及16KB的USB专用SRAM。...
recommend-type

基于OpenCV的人脸识别小程序.zip

【项目资源】: 包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。 包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、python、web、C#、EDA、proteus、RTOS等项目的源码。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

免安装JDK 1.8.0_241:即刻配置环境运行

资源摘要信息:"JDK 1.8.0_241 是Java开发工具包(Java Development Kit)的版本号,代表了Java软件开发环境的一个特定发布。它由甲骨文公司(Oracle Corporation)维护,是Java SE(Java Platform, Standard Edition)的一部分,主要用于开发和部署桌面、服务器以及嵌入式环境中的Java应用程序。本版本是JDK 1.8的更新版本,其中的241代表在该版本系列中的具体更新编号。此版本附带了Java源码,方便开发者查看和学习Java内部实现机制。由于是免安装版本,因此不需要复杂的安装过程,解压缩即可使用。用户配置好环境变量之后,即可以开始运行和开发Java程序。" 知识点详细说明: 1. JDK(Java Development Kit):JDK是进行Java编程和开发时所必需的一组工具集合。它包含了Java运行时环境(JRE)、编译器(javac)、调试器以及其他工具,如Java文档生成器(javadoc)和打包工具(jar)。JDK允许开发者创建Java应用程序、小程序以及可以部署在任何平台上的Java组件。 2. Java SE(Java Platform, Standard Edition):Java SE是Java平台的标准版本,它定义了Java编程语言的核心功能和库。Java SE是构建Java EE(企业版)和Java ME(微型版)的基础。Java SE提供了多种Java类库和API,包括集合框架、Java虚拟机(JVM)、网络编程、多线程、IO、数据库连接(JDBC)等。 3. 免安装版:通常情况下,JDK需要进行安装才能使用。但免安装版JDK仅需要解压缩到磁盘上的某个目录,不需要进行安装程序中的任何步骤。用户只需要配置好环境变量(主要是PATH、JAVA_HOME等),就可以直接使用命令行工具来运行Java程序或编译代码。 4. 源码:在软件开发领域,源码指的是程序的原始代码,它是由程序员编写的可读文本,通常是高级编程语言如Java、C++等的代码。本压缩包附带的源码允许开发者阅读和研究Java类库是如何实现的,有助于深入理解Java语言的内部工作原理。源码对于学习、调试和扩展Java平台是非常有价值的资源。 5. 环境变量配置:环境变量是操作系统中用于控制程序执行环境的参数。在JDK中,常见的环境变量包括JAVA_HOME和PATH。JAVA_HOME是JDK安装目录的路径,配置此变量可以让操作系统识别到JDK的位置。PATH变量则用于指定系统命令查找的路径,将JDK的bin目录添加到PATH后,就可以在命令行中的任何目录下执行JDK中的命令,如javac和java。 在实际开发中,了解并正确配置JDK对于Java开发者来说是一个基础且重要的环节。掌握如何安装和配置JDK,以及如何理解JDK中的源码和各种工具,对于进行Java编程和解决问题至关重要。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【提升效率与稳定性】:深入掌握单相整流器的控制策略

# 摘要 单相整流器作为电力电子技术的基础设备,广泛应用于电力系统和工业自动化领域。本文首先概述了单相整流器的基本概念,详细分析了其工作原理,包括电力电子器件的角色、数学模型以及控制策略。随后,针对控制技术进行了深入探讨,包括传统控制技术如PID控制和高级控制策略如模糊逻辑控制及自适应控制的应用。进一步地,本文提出了一系列提升单相整流器性能的方法,如效率提升策略、系统稳定性措施,以及性能评估与优化方案。最后,文章探讨了单相整流器在不同领域的应用案例,并对新兴技术与市场趋势进行了展望。 # 关键字 单相整流器;电力电子器件;数学模型;控制策略;性能提升;应用案例 参考资源链接:[单相PWM整
recommend-type

你看这是ashx映射的cs文件初始代码,你看这里边根本就没有写对action参数进行任何操作但你.ashx?action=submit这样去做他就能返回出数据这是为什么

在ASP.NET中,.ashx文件(也称为HTTP处理程序)用于处理HTTP请求并返回响应。即使在初始代码中没有对action参数进行任何操作,系统仍然可以通过默认的ProcessRequest方法处理请求并返回数据。 当你在URL中传递参数(如?action=submit)时,这些参数会被包含在请求的查询字符串中。虽然你的代码没有显式地处理这些参数,但默认的ProcessRequest方法会接收这些参数并执行一些默认操作。 以下是一个简单的.ashx文件示例: ```csharp <%@ WebHandler Language="C#" Class="MyHandler" %> us
recommend-type

机器学习预测葡萄酒评分:二值化品尝笔记的应用

资源摘要信息:"wine_reviewer:使用机器学习基于二值化的品尝笔记来预测葡萄酒评论分数" 在当今这个信息爆炸的时代,机器学习技术已经被广泛地应用于各个领域,其中包括食品和饮料行业的质量评估。在本案例中,将探讨一个名为wine_reviewer的项目,该项目的目标是利用机器学习模型,基于二值化的品尝笔记数据来预测葡萄酒评论的分数。这个项目不仅对于葡萄酒爱好者具有极大的吸引力,同时也为数据分析和机器学习的研究人员提供了实践案例。 首先,要理解的关键词是“机器学习”。机器学习是人工智能的一个分支,它让计算机系统能够通过经验自动地改进性能,而无需人类进行明确的编程。在葡萄酒评分预测的场景中,机器学习算法将从大量的葡萄酒品尝笔记数据中学习,发现笔记与葡萄酒最终评分之间的相关性,并利用这种相关性对新的品尝笔记进行评分预测。 接下来是“二值化”处理。在机器学习中,数据预处理是一个重要的步骤,它直接影响模型的性能。二值化是指将数值型数据转换为二进制形式(0和1)的过程,这通常用于简化模型的计算复杂度,或者是数据分类问题中的一种技术。在葡萄酒品尝笔记的上下文中,二值化可能涉及将每种口感、香气和外观等属性的存在与否标记为1(存在)或0(不存在)。这种方法有利于将文本数据转换为机器学习模型可以处理的格式。 葡萄酒评论分数是葡萄酒评估的量化指标,通常由品酒师根据酒的品质、口感、香气、外观等进行评分。在这个项目中,葡萄酒的品尝笔记将被用作特征,而品酒师给出的分数则是目标变量,模型的任务是找出两者之间的关系,并对新的品尝笔记进行分数预测。 在机器学习中,通常会使用多种算法来构建预测模型,如线性回归、决策树、随机森林、梯度提升机等。在wine_reviewer项目中,可能会尝试多种算法,并通过交叉验证等技术来评估模型的性能,最终选择最适合这个任务的模型。 对于这个项目来说,数据集的质量和特征工程将直接影响模型的准确性和可靠性。在准备数据时,可能需要进行数据清洗、缺失值处理、文本规范化、特征选择等步骤。数据集中的标签(目标变量)即为葡萄酒的评分,而特征则来自于品酒师的品尝笔记。 项目还提到了“kaggle”和“R”,这两个都是数据分析和机器学习领域中常见的元素。Kaggle是一个全球性的数据科学竞赛平台,提供各种机器学习挑战和数据集,吸引了来自全球的数据科学家和机器学习专家。通过参与Kaggle竞赛,可以提升个人技能,并有机会接触到最新的机器学习技术和数据处理方法。R是一种用于统计计算和图形的编程语言和软件环境,它在统计分析、数据挖掘、机器学习等领域有广泛的应用。使用R语言可以帮助研究人员进行数据处理、统计分析和模型建立。 至于“压缩包子文件的文件名称列表”,这里可能存在误解或打字错误。通常,这类名称应该表示存储项目相关文件的压缩包,例如“wine_reviewer-master.zip”。这个压缩包可能包含了项目的源代码、数据集、文档和其它相关资源。在开始项目前,研究人员需要解压这个文件包,并且仔细阅读项目文档,以便了解项目的具体要求和数据格式。 总之,wine_reviewer项目是一个结合了机器学习、数据处理和葡萄酒品鉴的有趣尝试,它不仅展示了机器学习在实际生活中的应用潜力,也为研究者提供了丰富的学习资源和实践机会。通过这种跨领域的合作,可以为葡萄酒行业带来更客观、一致的评价标准,并帮助消费者做出更加明智的选择。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【单相整流器终极指南】:电气工程师的20年实用技巧大揭秘

![【单相整流器终极指南】:电气工程师的20年实用技巧大揭秘](https://www.kemet.com/content/dam/kemet/lightning/images/ec-content/2020/08/Figure-1-film-filtering-solution-diagram.jpg) # 摘要 单相整流器是电力电子技术中应用广泛的设备,用于将交流电转换为直流电。本文首先介绍了单相整流器的基础知识和工作原理,分析了其设计要点,性能评估方法以及在电力系统和电子设备中的应用。接着,探讨了单相整流器的进阶应用和优化策略,包括提高效率和数字化改造。文章还通过具体案例分析,展示了单