cv2.findChessboardCorners
时间: 2023-07-02 15:03:30 浏览: 270
cv2.findChessboardCorners 是 OpenCV 库中的一个函数,用于在棋盘格图像中查找棋盘格角点。该函数需要输入棋盘格图像、棋盘格的大小以及一些其他参数,返回一个布尔值和一个数组。如果函数成功找到了棋盘格角点,则返回布尔值为 True,同时返回一个包含所有角点位置的数组。如果函数未能找到所有角点,则返回布尔值为 False。该函数通常用于摄像机标定等计算机视觉应用中。
相关问题
import cv2 import numpy as np chessboard_size = (7,10) # 棋盘格行列数 objp = np.zeros((np.prod(chessboard_size), 3), np.float32) # 内部点的坐标 objp[:, :2] = np.mgrid[0:chessboard_size[0], 0:chessboard_size[1]].T.reshape(-1, 2) img = cv2.imread('C:\Users\lenovo\Desktop\棋盘格\标定图片\OpenCV_Chessboard.png') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, corners = cv2.findChessboardCorners(gray, chessboard_size, None) if ret == True: cv2.drawChessboardCorners(img, chessboard_size, corners, ret) ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera([objp], [corners], gray.shape[::-1], None, None)这段代码怎么改可以打印出相机的内部参数和畸变系数以及外部参数
以下是修改后的代码,可以打印出相机的内部参数和畸变系数以及外部参数:
```
import cv2
import numpy as np
chessboard_size = (7,10) # 棋盘格行列数
objp = np.zeros((np.prod(chessboard_size), 3), np.float32) # 内部点的坐标
objp[:, :2] = np.mgrid[0:chessboard_size[0], 0:chessboard_size[1]].T.reshape(-1, 2)
img = cv2.imread('C:\Users\lenovo\Desktop\棋盘格\标定图片\OpenCV_Chessboard.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, corners = cv2.findChessboardCorners(gray, chessboard_size, None)
if ret == True:
cv2.drawChessboardCorners(img, chessboard_size, corners, ret)
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera([objp], [corners], gray.shape[::-1], None, None)
# 打印相机内部参数和畸变系数
print("相机内部参数:")
print(mtx)
print("畸变系数:")
print(dist)
# 打印外部参数
print("旋转向量:")
print(rvecs)
print("平移向量:")
print(tvecs)
```
需要注意的是,外部参数的打印结果是旋转向量和平移向量,不是直接的旋转矩阵和平移矩阵。如果需要得到旋转矩阵和平移矩阵,可以使用 `cv2.Rodrigues()` 函数将旋转向量转换为旋转矩阵。
import cv2 import numpy as np chessboard_size = (9,6) # 棋盘格行列数 objp = np.zeros((np.prod(chessboard_size), 3), np.float32) # 内部点的坐标 objp[:, :2] = np.mgrid[0:chessboard_size[0], 0:chessboard_size[1]].T.reshape(-1, 2) img = cv2.imread('C:/yingxiang/biaoding.png') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, corners = cv2.findChessboardCorners(gray, chessboard_size, None) if ret == True: cv2.drawChessboardCorners(img, chessboard_size, corners, ret) ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera([objp], [corners], gray.shape[::-1], None, None) # 打印相机内部参数和畸变系数 print("相机内部参数:") print(mtx) print("畸变系数:") print(dist) # 打印外部参数 print("旋转向量:") print(rvecs) print("平移向量:") print(tvecs)这段代码怎么改可以打印成正常数字形式
可以使用NumPy的set_printoptions()函数来设置打印选项,将结果打印成正常数字形式。可以将代码修改如下:
```python
import cv2
import numpy as np
chessboard_size = (9, 6) # 棋盘格行列数
objp = np.zeros((np.prod(chessboard_size), 3), np.float32) # 内部点的坐标
objp[:, :2] = np.mgrid[0:chessboard_size[0], 0:chessboard_size[1]].T.reshape(-1, 2)
img = cv2.imread('C:/yingxiang/biaoding.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, corners = cv2.findChessboardCorners(gray, chessboard_size, None)
if ret == True:
cv2.drawChessboardCorners(img, chessboard_size, corners, ret)
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera([objp], [corners], gray.shape[::-1], None, None)
# 打印相机内部参数和畸变系数
print("相机内部参数:")
np.set_printoptions(precision=4, suppress=True)
print(mtx)
print("畸变系数:")
np.set_printoptions(precision=4, suppress=True)
print(dist)
# 打印外部参数
print("旋转向量:")
np.set_printoptions(precision=4, suppress=True)
print(rvecs)
print("平移向量:")
np.set_printoptions(precision=4, suppress=True)
print(tvecs)
```
这里使用了np.set_printoptions()函数来设置打印选项,将精度设置为4位小数,并将科学计数法关闭。这样打印出来的结果就会是正常数字形式。
阅读全文