_, grad_naive = svm_loss_naive(W, X_dev, y_dev, 0.000005)

时间: 2023-12-21 20:03:36 浏览: 44
这行代码中,`svm_loss_naive`函数计算使用线性支持向量机进行分类的损失函数,并返回损失值和损失函数对权重W的梯度,其中W是一个d维的列向量,X_dev包含N个样本,每个样本有d维,y_dev是一个长度为N的向量,表示每个样本的类别标签。这里的0.000005是正则化系数,用于控制模型复杂度,防止过拟合。`grad_naive`是损失函数对W的梯度,是一个d维的列向量,用于更新模型参数。
相关问题

class NormalLoss(nn.Module): def __init__(self,ignore_lb=255, *args, **kwargs): super( NormalLoss, self).__init__() self.criteria = nn.CrossEntropyLoss(ignore_index=ignore_lb, reduction='none') def forward(self, logits, labels): N, C, H, W = logits.size() loss = self.criteria(logits, labels) return torch.mean(loss) class Fusionloss(nn.Module): def __init__(self): super(Fusionloss, self).__init__() self.sobelconv=Sobelxy() def forward(self,image_vis,image_ir,labels,generate_img,i): image_y=image_vis[:,:1,:,:] x_in_max=torch.max(image_y,image_ir) loss_in=F.l1_loss(x_in_max,generate_img) y_grad=self.sobelconv(image_y) ir_grad=self.sobelconv(image_ir) generate_img_grad=self.sobelconv(generate_img) x_grad_joint=torch.max(y_grad,ir_grad) loss_grad=F.l1_loss(x_grad_joint,generate_img_grad) loss_total=loss_in+10*loss_grad return loss_total,loss_in,loss_grad

这段代码定义了两个损失函数类:NormalLoss和Floss。 NormalLoss是一个普通的损失函数类,继承自nn.Module。构造函数中包含了一个可选参数ignore_lb,默认值为255。在构造函数中,使用nn.CrossEntropyLoss作为损失函数的标准,设置ignore_index为ignore_lb,reduction为'none',这样可以得到每个样本的损失值。在前向传播方法forward中,计算logits和labels之间的交叉熵损失loss,并取平均值返回。 Fusionloss是一个融合损失函数类,继承自nn.Module。构造函数中初始化了一个Sobelxy模块(未给出代码),该模块用于计算图像的梯度。在前向传播方法forward中,接受image_vis、image_ir、labels、generate_img和i作为输入。首先从image_vis中提取灰度通道image_y,然后计算image_y和image_ir的最大值x_in_max,并使用F.l1_loss计算其与generate_img之间的L1损失loss_in。接下来,分别计算image_y、image_ir和generate_img的梯度,并取最大值得到x_grad_joint。再次使用F.l1_loss计算x_grad_joint和generate_img_grad之间的L1损失loss_grad。最后,将loss_in和10倍的loss_grad相加得到总的损失loss_total,并返回。 整体来看,这段代码定义了两个损失函数类,NormalLoss用于计算交叉熵损失,Fusionloss用于计算融合损失。

修改以下代码:import numpy as np def bb_method(x, num_iterations): lr = 0.1 for i in range(num_iterations): grad = np.array([2x[0], 200x[1]]) if i == 0: lr = 0.1 else: delta_x = x - prev_x delta_grad = grad - prev_grad lr = np.abs(np.dot(delta_x, delta_grad)) / np.dot(delta_grad, delta_grad) prev_x = x prev_grad = grad x = x - lr * grad return x x = np.array([1, 1]) num_iterations = 1000 result = bb_method(x, num_iterations) print(result)。使其成为学习率始终不变的BB方法

为了使其成为学习率始终不变的BB方法,可以在循环之前指定固定的学习率,而不是在每次迭代时计算学习率。可以将代码修改为: ```python import numpy as np def bb_method(x, num_iterations, lr=0.1): prev_x = x prev_grad = np.array([2*x[0], 200*x[1]]) for i in range(num_iterations): grad = np.array([2*x[0], 200*x[1]]) delta_x = x - prev_x delta_grad = grad - prev_grad x = x - lr * grad prev_x = prev_x + delta_x prev_grad = prev_grad + delta_grad return x x = np.array([1, 1]) num_iterations = 1000 result = bb_method(x, num_iterations, lr=0.1) print(result) ``` 这样,每次迭代时都使用相同的学习率 lr=0.1 ,不会随着迭代次数的增加而变化。

相关推荐

最新推荐

recommend-type

pytorch 状态字典:state_dict使用详解

需要注意的是,不能直接对模型层对象如`model.conv1`设置`requires_grad`,因为`requires_grad`是Tensor的属性,而不是Layer的属性。因此,你需要遍历模型的参数列表进行操作。 总结来说,`state_dict`是PyTorch中...
recommend-type

JAVA图书馆书库管理系统设计(论文+源代码).zip

JAVA图书馆书库管理系统设计(论文+源代码)
recommend-type

unity直接从excel中读取数据,暂存数据格式为dic<string,Object>

unity直接从excel中读取数据,暂存数据格式为dic<string,Object>,string为sheet表名,Object为List<表中对应的实体类>,可以自行获取数据进行转换。核心方法为ImportExcelFiles,参数有 string[]<param name="filePaths">多个excel文件路径</param> Assembly<param name="assembly">程序集</param> string<param name="namespacePrefix">命名空间</param> Dictionary<string, string><param name="sheetNameShiftDic">映射表</param>
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】井字棋游戏:开发井字棋游戏,重点在于AI对手的实现。

![【实战演练】井字棋游戏:开发井字棋游戏,重点在于AI对手的实现。](https://img-blog.csdnimg.cn/3d6666081a144d04ba37e95dca25dbd8.png) # 2.1 井字棋游戏规则 井字棋游戏是一个两人对弈的游戏,在3x3的棋盘上进行。玩家轮流在空位上放置自己的棋子(通常为“X”或“O”),目标是让自己的棋子连成一条直线(水平、垂直或对角线)。如果某位玩家率先完成这一目标,则该玩家获胜。 游戏开始时,棋盘上所有位置都为空。玩家轮流放置自己的棋子,直到出现以下情况之一: * 有玩家连成一条直线,获胜。 * 棋盘上所有位置都被占满,平局。