已知下列开环传递函数,G=9/(s^2+3s+9)要求:(1)输出系统在单位正反馈下的闭环传递函数;(2分)(2)判断系统的稳定性;(4分)(3)若系统稳定,绘制抛物线信号输入响应曲线并求出静态加速度误差系数Ka。(4分)
时间: 2024-01-26 11:03:13 浏览: 95
好的,我来回答您的问题:
1. 首先,我们可以根据已知的开环传递函数G,得到单位正反馈下的闭环传递函数T(s)。根据公式 T(s) = G / (1 + G),即可得到闭环传递函数为:
T(s) = 9 / (s^2 + 3s + 18)
2. 系统的稳定性可以通过判断闭环传递函数的极点位置来确定。闭环传递函数的极点为解方程 s^2 + 3s + 18 = 0 得出,求得 s1 = -1.5 + 2.958i 和 s2 = -1.5 - 2.958i。由于两个极点的实部都小于零,因此系统是稳定的。
3. 若系统稳定,可以绘制输入信号为抛物线时的输出响应曲线,并求出静态加速度误差系数Ka。静态加速度误差系数Ka可以通过求解系统的稳态误差来得到。对于抛物线输入,其 Laplace 变换为 1/s^3,因此系统的稳态误差为 e_ss = 1/Ka,其中 Ka = lim(s->0) sT(s)。将 T(s) 带入公式,求解得到 Ka = 2/9。至于如何绘制响应曲线,可以通过反演拉普拉斯变换来得到,具体可以参考控制理论相关的教材。
希望以上回答能够解决您的问题,如有不清楚的地方,可以继续追问。
阅读全文