softplus和softmax函数
时间: 2024-03-04 10:48:38 浏览: 206
0083-极智AI-解读C++手写softmax激活函数-个人笔记
softplus函数和softmax函数都是常用的非线性激活函数,但它们的作用不同。
softplus函数是一种平滑的ReLU函数,用于将任意实数映射到一个非负实数上,其函数表达式为:softplus(x) = log(1 + exp(x))。它在神经网络中常用于处理输出为正数的情况,如在某些强化学习任务中,模型输出的动作值需要服从正态分布,因此可以通过在输出层使用softplus函数来将输出限制在非负实数上。
softmax函数则是一种常用的归一化函数,用于将一个K维的实数向量压缩为一个概率分布,使得每一个维度的数值都在0到1之间,并且所有维度的数值和为1。其函数表达式为:softmax(x) = exp(x) / sum(exp(x)),其中exp(x)表示对x中每个元素求指数,sum(exp(x))表示对x中所有元素求和。softmax函数在分类问题中广泛应用,用于将输出层的向量转换为各个类别的概率分布,以便进行预测和损失计算。
因此,虽然softplus和softmax函数都是非线性激活函数,但它们的作用和使用场景是不同的。
阅读全文