np.expand_dims(image_list, axis=-1)什么意思
时间: 2024-05-31 14:07:50 浏览: 149
这个函数的作用是在数组的指定位置增加一个维度。具体来说,np.expand_dims(image_list, axis=-1) 的意思是将 image_list 数组在最后一个维度上增加一个维度。如果 image_list 的原始维度是 (n1, n2, n3),那么增加维度后的数组维度就会变成 (n1, n2, n3, 1)。这个函数通常用于将灰度图像转换为 RGB 图像,或者将一维数组转换为二维数组等。
相关问题
def cartoonize(load_folder, save_folder, model_path): input_photo = tf.placeholder(tf.float32, [1, None, None, 3]) network_out = network.unet_generator(input_photo) final_out = guided_filter.guided_filter(input_photo, network_out, r=1, eps=5e-3) all_vars = tf.trainable_variables() gene_vars = [var for var in all_vars if 'generator' in var.name] saver = tf.train.Saver(var_list=gene_vars) config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) sess.run(tf.global_variables_initializer()) saver.restore(sess, tf.train.latest_checkpoint(model_path)) name_list = os.listdir(load_folder) for name in tqdm(name_list): try: load_path = os.path.join(load_folder, name) save_path = os.path.join(save_folder, name) image = cv2.imread(load_path) image = resize_crop(image) batch_image = image.astype(np.float32)/127.5 - 1 batch_image = np.expand_dims(batch_image, axis=0) output = sess.run(final_out, feed_dict={input_photo: batch_image}) output = (np.squeeze(output)+1)*127.5 output = np.clip(output, 0, 255).astype(np.uint8) cv2.imwrite(save_path, output) except: print('cartoonize {} failed'.format(load_path))
这是一个用于将图像转换为卡通风格的函数。它使用了一个基于UNet的生成器网络来实现转换。函数的输入参数包括加载图像的文件夹路径load_folder,保存结果的文件夹路径save_folder,以及模型的路径model_path。
函数首先创建了一个占位符input_photo,用于接收输入图像。然后使用UNet生成器网络对输入图像进行转换,得到网络的输出network_out。接下来,使用guided_filter对输入图像和网络输出进行引导滤波,得到最终的输出final_out。
函数使用tf.trainable_variables()获取所有可训练的变量,并通过筛选将属于生成器网络的变量gene_vars提取出来。然后创建一个Saver对象,用于保存和恢复模型时只操作生成器网络的变量。
接下来,创建一个tf.Session,并进行全局变量的初始化。然后通过saver.restore()方法恢复生成器网络的权重,这里使用了最新的checkpoint。
接下来,函数列举了加载文件夹中的所有图像文件,并使用循环对每个图像进行卡通化处理。首先读取图像,并使用之前定义的resize_crop函数对图像进行尺寸调整和裁剪。然后将图像归一化为[-1, 1]的范围,并在第0维上扩展一个维度,以适应网络输入的要求。接下来,通过sess.run()方法运行最终输出final_out,将输入图像传入input_photo的占位符中。得到的输出经过反归一化处理,再进行像素值的裁剪和类型转换,并使用cv2.imwrite()保存结果图像。
最后,函数通过try-except语句来处理异常情况,如果处理某个图像失败,则打印出错误信息。
总之,这个函数可以将指定文件夹中的图像转换为卡通风格,并保存到指定文件夹中。
def load_data(address): im=io.imread(address) image_list=[] for item in im: row=[] for i in item: row.append([i[0]]) image_list.append(row) array=np.array(image_list) array=array/255 image=np.expand_dims(array,axis=0) return image address_list=['0.jpg','1.jpg','2.jpg','3.jpg','4.jpg','5.jpg','6.jpg','7.jpg','8.jpg','9.jpg'] for address in address_list: image=load_data(address) predictions=model.predict_classes(image) print('图片预测结果:'+str(predictions[0]))
这段代码的作用是加载图像数据并进行预测。它首先定义了一个`load_data`函数,该函数接受一个地址作为参数,通过`io.imread`函数加载图像,并将图像数据归一化处理。然后,它将图像数据转换为Numpy数组,并在第0维度上扩展维度。最后,它返回处理后的图像数据。
在主程序中,定义了一个地址列表`address_list`,循环遍历地址列表中的每个地址。对于每个地址,调用`load_data`函数加载图像数据,并使用模型`model`进行预测。预测的结果存储在`predictions`变量中,并通过打印语句输出预测结果。
请注意,这段代码中引用了一些未定义的变量,比如`io`、`model`和`np`,你需要在代码中添加相应的导入语句以确保代码能够正确运行。另外,请检查代码缩进是否正确,以保证代码逻辑正确。
阅读全文