scale down model

时间: 2023-11-28 14:02:57 浏览: 29
scale down model(缩小模型)是指在建模过程中将原始模型按比例缩小的操作。在建模和设计过程中,通常需要制作一个原型或模型来帮助人们更好地理解产品的外观和结构。然而,有时候原始模型过大,不方便携带和展示,或者成本过高,因此需要进行缩小处理。 缩小模型可以带来许多好处。首先,它可以减少材料的使用量,降低制作成本。其次,缩小模型后可以更方便地展示和携带,更容易在不同场合展示和分享。另外,缩小模型也可以帮助人们更直观地感受产品的比例和尺寸,更好地了解产品的实际效果。 在制作缩小模型时,需要考虑一些因素。首先是缩放比例,需要根据实际需求和使用场景确定适当的比例。其次是材料选择,需要选择合适的材料来制作缩小模型,保证其质量和稳定性。最后是细节处理,需要注意保留原始模型的细节和特点,在缩小模型中尽可能保持原始效果。 总之,缩小模型是一个常见且有效的建模方法,能够为设计和展示带来诸多好处。通过合理的缩小处理,可以更好地满足不同场合的需求,提高模型的实用性和可展示性。
相关问题

def predict_one_img(model, img_dataset, args): # def predict_one_img(model, img_dataset, data, target, args): dataloader = DataLoader(dataset=img_dataset, batch_size=1, num_workers=0, shuffle=False) model.eval() test_dice = DiceAverage(args.n_labels) # target = to_one_hot_3d(label, args.n_labels) with torch.no_grad(): for data ,target in tqdm(dataloader, total=len(dataloader)): # data = data.to(device) data, target = data.float(), target.long() target = to_one_hot_3d(target, args.n_labels) data, target = data.to(device), target.to(device) # print(data.shape) # print(target.shape) output = model(data) # output = nn.functional.interpolate(output, scale_factor=(1//args.slice_down_scale,1//args.xy_down_scale,1//args.xy_down_scale), mode='trilinear', align_corners=False) # 空间分辨率恢复到原始size img_dataset.update_result(output.detach().cpu()) pred = img_dataset.recompone_result() pred = torch.argmax(pred, dim=1) pred_img = to_one_hot_3d(pred, args.n_labels) pred_img=pred_img.to(device) test_dice.update(pred_img, target) test_dice = OrderedDict({'Dice_liver': test_dice.avg[1]}) if args.n_labels == 3: test_dice.update({'Dice_tumor': test_dice.avg[2]}) pred = np.asarray(pred.numpy(), dtype='uint8') if args.postprocess: pass # TO DO pred = sitk.GetImageFromArray(np.squeeze(pred, axis=0)) return test_dice, pred

这是一个用于预测单张图像的函数,接收一个模型、一个图像数据集和一些参数作为输入。函数首先将图像数据集加载到一个Dataloader中,然后将模型设置为评估模式并初始化一个DiceAverage对象,该对象用于计算评估指标(这里是Dice系数)。在没有梯度的情况下,对于每个数据和目标对,函数将数据和目标转换为模型所需的格式(浮点数和one-hot编码),并将它们传递给模型进行预测。预测结果被转换回原来的空间分辨率,然后被添加到图像数据集中。最后,预测结果被重新组合成一个numpy数组,并被转换为一个SimpleITK图像对象并返回。如果需要,可以在预测之后对预测结果进行后处理。函数返回测试指标和预测结果。

model_glm_roc<-list("none"=roc_glm_1,"down"=roc_glm_2,"up"=roc_glm_3,"smote"=roc_glm_4,"rose"=roc_glm_5) p <- ggroc(model_glm_roc,legacy.axes=TRUE, alpha=0.6, size=0.8)+ ggtitle("Logistic Regression")+ theme(plot.title = element_text(size=12,hjust=0.5)) 如何修改默认的图例标签

如果您想修改ggroc函数生成的默认图例标签,可以使用`scale_color_discrete()`函数来覆盖默认标签。 以下是一个示例代码,演示如何将默认标签更改为自定义标签: ``` # 定义自定义标签 labels <- c("None", "Downsampling", "Upsampling", "SMOTE", "ROSE") # 生成图例标签映射 mapping <- aes(color = factor(label, levels = c("none", "down", "up", "smote", "rose")), linetype = factor(label, levels = c("none", "down", "up", "smote", "rose"))) # 生成ggroc图 p <- ggroc(model_glm_roc, legacy.axes = TRUE, alpha = 0.6, size = 0.8) + # 使用自定义标签覆盖默认标签 scale_color_discrete(name = "Method", labels = labels) + scale_linetype_manual(name = "Method", values = c("solid", "dashed", "dashed", "dashed", "dotted")) + ggtitle("Logistic Regression") + theme(plot.title = element_text(size = 12, hjust = 0.5)) # 显示图形 p ``` 在这段代码中,我们首先定义了一个自定义标签向量`labels`,其中包含了我们想要的标签名称。然后,我们生成了一个图例标签映射`mapping`,将`label`变量映射到`color`和`linetype`变量上,并使用自定义标签覆盖默认标签。最后,我们使用`scale_linetype_manual()`函数设定线型标记,使其与自定义标签相对应。

相关推荐

# New module: utils.pyimport torchfrom torch import nnclass ConvBlock(nn.Module): """A convolutional block consisting of a convolution layer, batch normalization layer, and ReLU activation.""" def __init__(self, in_chans, out_chans, drop_prob): super().__init__() self.conv = nn.Conv2d(in_chans, out_chans, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_chans) self.relu = nn.ReLU(inplace=True) self.dropout = nn.Dropout2d(p=drop_prob) def forward(self, x): x = self.conv(x) x = self.bn(x) x = self.relu(x) x = self.dropout(x) return x# Refactored U-Net modelfrom torch import nnfrom utils import ConvBlockclass UnetModel(nn.Module): """PyTorch implementation of a U-Net model.""" def __init__(self, in_chans, out_chans, chans, num_pool_layers, drop_prob, pu_args=None): super().__init__() PUPS.__init__(self, *pu_args) self.in_chans = in_chans self.out_chans = out_chans self.chans = chans self.num_pool_layers = num_pool_layers self.drop_prob = drop_prob # Calculate input and output channels for each ConvBlock ch_list = [chans] + [chans * 2 ** i for i in range(num_pool_layers - 1)] in_chans_list = [in_chans] + [ch_list[i] for i in range(num_pool_layers - 1)] out_chans_list = ch_list[::-1] # Create down-sampling layers self.down_sample_layers = nn.ModuleList() for i in range(num_pool_layers): self.down_sample_layers.append(ConvBlock(in_chans_list[i], out_chans_list[i], drop_prob)) # Create up-sampling layers self.up_sample_layers = nn.ModuleList() for i in range(num_pool_layers - 1): self.up_sample_layers.append(ConvBlock(out_chans_list[i], out_chans_list[i + 1] // 2, drop_prob)) self.up_sample_layers.append(ConvBlock(out_chans_list[-1], out_chans_list[-1], drop_prob)) # Create final convolution layer self.conv2 = nn.Sequential( nn.Conv2d(out_chans_list[-1], out_chans_list[-1] // 2, kernel_size=1), nn.Conv2d(out_chans_list[-1] // 2, out_chans, kernel_size=1), nn.Conv2d(out_chans, out_chans, kernel_size=1), ) def forward(self, x): # Down-sampling path encoder_outs = [] for layer in self.down_sample_layers: x = layer(x) encoder_outs.append(x) x = nn.MaxPool2d(kernel_size=2)(x) # Bottom layer x = self.conv(x) # Up-sampling path for i, layer in enumerate(self.up_sample_layers): x = nn.functional.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True) x = torch.cat([x, encoder_outs[-(i + 1)]], dim=1) x = layer(x) # Final convolution layer x = self.conv2(x) return x

最新推荐

recommend-type

数字化转型背景下的企业数据资产管理两份文件.pptx

数字化转型背景下的企业数据资产管理两份文件.pptx
recommend-type

C#输出所有排列组合代码正确例题.txt

C#输出所有排列组合代码正确例题
recommend-type

SM2259三星512Gsata M2固态量产工具,MT29F512G08EBLDE,59XIB37D-512VO

颗粒型号含MT29F512G08EBLDE或FWNSS59XIB37D-512VO
recommend-type

2022-2028全球与中国PCB钻针市场现状及未来发展趋势.docx

2022-2028全球与中国PCB钻针市场现状及未来发展趋势.docx
recommend-type

新型智慧城市整体规划建设方案双份文档.pptx

新型智慧城市整体规划建设方案双份文档.pptx
recommend-type

电力电子系统建模与控制入门

"该资源是关于电力电子系统建模及控制的课程介绍,包含了课程的基本信息、教材与参考书目,以及课程的主要内容和学习要求。" 电力电子系统建模及控制是电力工程领域的一个重要分支,涉及到多学科的交叉应用,如功率变换技术、电工电子技术和自动控制理论。这门课程主要讲解电力电子系统的动态模型建立方法和控制系统设计,旨在培养学生的建模和控制能力。 课程安排在每周二的第1、2节课,上课地点位于东12教401室。教材采用了徐德鸿编著的《电力电子系统建模及控制》,同时推荐了几本参考书,包括朱桂萍的《电力电子电路的计算机仿真》、Jai P. Agrawal的《Powerelectronicsystems theory and design》以及Robert W. Erickson的《Fundamentals of Power Electronics》。 课程内容涵盖了从绪论到具体电力电子变换器的建模与控制,如DC/DC变换器的动态建模、电流断续模式下的建模、电流峰值控制,以及反馈控制设计。还包括三相功率变换器的动态模型、空间矢量调制技术、逆变器的建模与控制,以及DC/DC和逆变器并联系统的动态模型和均流控制。学习这门课程的学生被要求事先预习,并尝试对书本内容进行仿真模拟,以加深理解。 电力电子技术在20世纪的众多科技成果中扮演了关键角色,广泛应用于各个领域,如电气化、汽车、通信、国防等。课程通过列举各种电力电子装置的应用实例,如直流开关电源、逆变电源、静止无功补偿装置等,强调了其在有功电源、无功电源和传动装置中的重要地位,进一步凸显了电力电子系统建模与控制技术的实用性。 学习这门课程,学生将深入理解电力电子系统的内部工作机制,掌握动态模型建立的方法,以及如何设计有效的控制系统,为实际工程应用打下坚实基础。通过仿真练习,学生可以增强解决实际问题的能力,从而在未来的工程实践中更好地应用电力电子技术。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

图像写入的陷阱:imwrite函数的潜在风险和规避策略,规避图像写入风险,保障数据安全

![图像写入的陷阱:imwrite函数的潜在风险和规避策略,规避图像写入风险,保障数据安全](https://static-aliyun-doc.oss-accelerate.aliyuncs.com/assets/img/zh-CN/2275688951/p86862.png) # 1. 图像写入的基本原理与陷阱 图像写入是计算机视觉和图像处理中一项基本操作,它将图像数据从内存保存到文件中。图像写入过程涉及将图像数据转换为特定文件格式,并将其写入磁盘。 在图像写入过程中,存在一些潜在陷阱,可能会导致写入失败或图像质量下降。这些陷阱包括: - **数据类型不匹配:**图像数据可能与目标文
recommend-type

protobuf-5.27.2 交叉编译

protobuf(Protocol Buffers)是一个由Google开发的轻量级、高效的序列化数据格式,用于在各种语言之间传输结构化的数据。版本5.27.2是一个较新的稳定版本,支持跨平台编译,使得可以在不同的架构和操作系统上构建和使用protobuf库。 交叉编译是指在一个平台上(通常为开发机)编译生成目标平台的可执行文件或库。对于protobuf的交叉编译,通常需要按照以下步骤操作: 1. 安装必要的工具:在源码目录下,你需要安装适合你的目标平台的C++编译器和相关工具链。 2. 配置Makefile或CMakeLists.txt:在protobuf的源码目录中,通常有一个CMa
recommend-type

SQL数据库基础入门:发展历程与关键概念

本文档深入介绍了SQL数据库的基础知识,首先从数据库的定义出发,强调其作为数据管理工具的重要性,减轻了开发人员的数据处理负担。数据库的核心概念是"万物皆关系",即使在面向对象编程中也有明显区分。文档讲述了数据库的发展历程,从早期的层次化和网状数据库到关系型数据库的兴起,如Oracle的里程碑式论文和拉里·埃里森推动的关系数据库商业化。Oracle的成功带动了全球范围内的数据库竞争,最终催生了SQL这一通用的数据库操作语言,统一了标准,使得关系型数据库成为主流。 接着,文档详细解释了数据库系统的构成,包括数据库本身(存储相关数据的集合)、数据库管理系统(DBMS,负责数据管理和操作的软件),以及数据库管理员(DBA,负责维护和管理整个系统)和用户应用程序(如Microsoft的SSMS)。这些组成部分协同工作,确保数据的有效管理和高效处理。 数据库系统的基本要求包括数据的独立性,即数据和程序的解耦,有助于快速开发和降低成本;减少冗余数据,提高数据共享性,以提高效率;以及系统的稳定性和安全性。学习SQL时,要注意不同数据库软件可能存在的差异,但核心语言SQL的学习是通用的,后续再根据具体产品学习特异性。 本文档提供了一个全面的框架,涵盖了SQL数据库从基础概念、发展历程、系统架构到基本要求的方方面面,对于初学者和数据库管理员来说是一份宝贵的参考资料。