剪枝函数分支限界法0-1背包问题c语言

时间: 2023-12-28 14:01:42 浏览: 303
剪枝函数分支限界法是一种常用于解决0-1背包问题的算法。在C语言中,我们可以使用递归的方式实现这一算法。 首先,我们需要定义一个结构体来表示物品的信息,包括物品的重量和价值。然后,我们可以定义一个递归函数来不断地搜索可能的解,并在搜索过程中使用剪枝函数来减少搜索空间。 在递归函数中,我们可以通过参数来表示当前的搜索状态,包括当前已经选择的物品、剩余的空间和当前已经获得的价值。然后在每一步中,我们可以依次尝试选择或不选择当前物品,然后继续搜索下一个物品的情况,直到搜索完所有的物品为止。 在搜索的过程中,我们可以使用剪枝函数来判断当前的搜索状态是否有可能获得比当前最优解更好的结果。如果当前状态不可能获得更好的解,我们就可以剪掉当前分支,从而减少不必要的搜索。 最后,当搜索完所有的可能情况后,我们就可以得到问题的最优解。这种方法能够在搜索空间较大时显著减少搜索时间,提高算法效率。 在C语言中实现剪枝函数分支限界法的0-1背包问题,需要谨慎处理递归和剪枝函数的逻辑,同时需要合理地定义数据结构和参数传递方式,以确保算法的正确性和高效性。同时,需要对搜索状态和剪枝条件有一个清晰的认识,以找到合适的剪枝点,从而减少搜索空间。
相关问题

分支限界法解决01背包问题c语言实现

好的,这里提供一个基于C语言的分支限界法解决01背包问题的实现。下面的代码实现了一个求解01背包问题的函数,函数的参数包括物品数目n、背包容量c、每个物品的重量w和价值v,以及函数返回的最大价值。代码中使用了一个结构体Item来表示每个物品,其中包含了物品的重量和价值。 ```c #include <stdio.h> #include <stdlib.h> typedef struct { int weight; int value; } Item; // 比较函数,按照每个物品的单位价值从大到小排序 int cmp(const void* a, const void* b) { Item* itemA = (Item*)a; Item* itemB = (Item*)b; double uA = (double)itemA->value / itemA->weight; double uB = (double)itemB->value / itemB->weight; if (uA > uB) { return -1; } else if (uA < uB) { return 1; } else { return 0; } } // 分支限界法求解01背包问题 double knapsack(int n, int c, int* w, int* v) { Item* items = (Item*)malloc(n * sizeof(Item)); for (int i = 0; i < n; i++) { items[i].weight = w[i]; items[i].value = v[i]; } qsort(items, n, sizeof(Item), cmp); double maxV = 0.0; int curW = 0; int curV = 0; int* mark = (int*)calloc(n, sizeof(int)); int* curMark = (int*)calloc(n, sizeof(int)); double bound = 0.0; int k = 0; while (1) { if (curW + items[k].weight <= c) { curW += items[k].weight; curV += items[k].value; curMark[k] = 1; } else { curMark[k] = (c - curW) * 1.0 / items[k].weight; curW = c; curV += curMark[k] * items[k].value; } if (curV > maxV) { maxV = curV; for (int i = 0; i < n; i++) { mark[i] = curMark[i]; } } if (k == n - 1) { break; } bound = curV + (c - curW) * (double)items[k + 1].value / items[k + 1].weight; if (bound <= maxV) { break; } k++; } free(curMark); free(mark); free(items); return maxV; } int main() { int n = 4; int c = 15; int w[] = {2, 3, 5, 7}; int v[] = {10, 5, 15, 7}; double maxV = knapsack(n, c, w, v); printf("Max value: %.1f\n", maxV); return 0; } ``` 在这个实现中,我们首先将所有物品按照单位价值从大到小排序,然后按照顺序依次选择物品,直到背包装满或者没有物品可选。在每一次选择物品的过程中,我们计算剩余物品的价值上限,如果这个上限已经小于当前最优解,就可以剪枝,不再扩展该节点。如果这个上限大于当前最优解,则继续扩展该节点,直到找到一个完整的解或者搜索完整棵树。 希望这个C语言实现的例子能够对您有所帮助。

优先队列分支限界法实现0/1背包C语言

以下是使用优先队列分支限界法实现0/1背包的C语言代码: ```c #include <stdio.h> #include <stdlib.h> // 物品结构体 typedef struct item { int weight; // 物品重量 int value; // 物品价值 double density; // 物品密度,即单位重量的价值 } Item; // 优先队列结构体 typedef struct queue { int level; // 节点所处的层数 int profit; // 当前节点的价值 int weight; // 当前节点的重量 double bound; // 当前节点的价值上界 } Queue; // 构造优先队列节点 Queue* newQueue(int level, int profit, int weight, double bound) { Queue* q = (Queue*)malloc(sizeof(Queue)); q->level = level; q->profit = profit; q->weight = weight; q->bound = bound; return q; } // 比较函数,用于优先队列排序 int cmp(const void* a, const void* b) { Queue* q1 = *(Queue**)a; Queue* q2 = *(Queue**)b; return q2->bound - q1->bound; } // 优先队列分支限界法求解0/1背包问题 int knapsack(Item* items, int n, int capacity) { // 按照物品密度从大到小排序 for (int i = 0; i < n; i++) { items[i].density = (double)items[i].value / (double)items[i].weight; } qsort(items, n, sizeof(Item), cmp); // 初始化优先队列,将根节点加入队列中 Queue** queue = (Queue**)malloc(sizeof(Queue*) * (n + 1)); Queue* root = newQueue(-1, 0, 0, 0.0); queue[0] = root; int front = 0, rear = 1; int maxProfit = 0; // 迭代搜索优先队列中的节点 while (front < rear) { // 取出队首节点 Queue* q = queue[front++]; if (q->bound > maxProfit) { // 可行性剪枝 if (q->level == n - 1) { // 到达叶子节点,更新最大价值 maxProfit = q->profit; } else { // 产生左儿子节点(装入该物品) int leftLevel = q->level + 1; int leftProfit = q->profit + items[leftLevel].value; int leftWeight = q->weight + items[leftLevel].weight; double leftBound = q->bound; if (leftWeight <= capacity) { // 可行性剪枝 leftBound += (double)items[leftLevel + 1].value / (double)items[leftLevel + 1].weight * (capacity - leftWeight); Queue* left = newQueue(leftLevel, leftProfit, leftWeight, leftBound); queue[rear++] = left; } // 产生右儿子节点(不装入该物品) int rightLevel = q->level + 1; int rightProfit = q->profit; int rightWeight = q->weight; double rightBound = q->bound; if (rightLevel < n - 1) { // 限界剪枝 rightBound += (double)items[rightLevel + 1].value / (double)items[rightLevel + 1].weight * (capacity - rightWeight); Queue* right = newQueue(rightLevel, rightProfit, rightWeight, rightBound); queue[rear++] = right; } } } } // 释放内存 for (int i = 0; i < rear; i++) { free(queue[i]); } free(queue); return maxProfit; } int main() { Item items[] = {{2, 12}, {1, 10}, {3, 20}, {2, 15}}; int n = sizeof(items) / sizeof(items[0]); int capacity = 5; int maxProfit = knapsack(items, n, capacity); printf("Max profit: %d\n", maxProfit); return 0; } ``` 代码中,先将物品按照密度从大到小排序,然后构造根节点,并将其加入优先队列中。接着,迭代搜索队列中的节点,对于每个节点,产生左右两个儿子节点,并根据可行性剪枝和限界剪枝来确定是否将其加入队列中。最终,搜索到叶子节点或者队列为空时,返回最大价值。 以上就是使用优先队列分支限界法实现0/1背包问题的C语言代码。
阅读全文

相关推荐

最新推荐

recommend-type

动态规划法、贪心算法、回溯法、分支限界法解决0-1背包

0-1背包问题是一个经典的组合优化...回溯法和分支限界法则适用于更广泛的搜索问题,但在0-1背包问题中,它们通常不如动态规划法效率高。在实际应用中,选择哪种算法取决于问题的具体特性以及对时间和空间复杂度的要求。
recommend-type

0-1背包问题 分支界限法程序 数据结构

这段代码展示了如何用C语言实现分支界限法解决0-1背包问题,但需要注意的是,代码中可能存在一些语法错误,如注释的格式问题,以及未定义的变量。实际应用中,应确保代码的完整性和正确性。此外,为了提高效率,通常...
recommend-type

装载问题-分支限界算法-java实现

装载问题有多种变种,包括0/1背包问题、分支限界问题、动态规划问题等。 分支限界算法 分支限界算法是解决装载问题的一种常用方法,该算法通过递归地搜索可能的解决方案,并使用剪枝函数来减少搜索空间。该算法...
recommend-type

Java源码ssm框架的房屋租赁系统-合同-毕业设计论文-期末大作业.rar

本项目是一个基于Java源码的SSM框架房屋租赁系统,旨在为房屋租赁市场提供一个便捷、高效、安全的管理平台。系统主要功能包括房屋信息管理、租赁合同管理、租金收取管理、租客信息管理等。通过该系统,房东可以轻松发布房屋信息,管理租赁合同和租金收取,而租客则可以方便地查找合适的房源,提交租赁申请,签订电子合同,并进行租金支付。系统采用SSM框架(Spring、Spring MVC、MyBatis)进行开发,确保了系统的稳定性和扩展性。Spring框架负责依赖注入和业务逻辑管理,Spring MVC处理前端请求和页面展示,MyBatis则用于数据库操作。项目还集成了权限管理、日志记录等模块,提升了系统的安全性和可维护性。项目为完整毕设源码,先看项目演示,希望对需要的同学有帮助。
recommend-type

易语言例程:用易核心支持库打造功能丰富的IE浏览框

资源摘要信息:"易语言-易核心支持库实现功能完善的IE浏览框" 易语言是一种简单易学的编程语言,主要面向中文用户。它提供了大量的库和组件,使得开发者能够快速开发各种应用程序。在易语言中,通过调用易核心支持库,可以实现功能完善的IE浏览框。IE浏览框,顾名思义,就是能够在一个应用程序窗口内嵌入一个Internet Explorer浏览器控件,从而实现网页浏览的功能。 易核心支持库是易语言中的一个重要组件,它提供了对IE浏览器核心的调用接口,使得开发者能够在易语言环境下使用IE浏览器的功能。通过这种方式,开发者可以创建一个具有完整功能的IE浏览器实例,它不仅能够显示网页,还能够支持各种浏览器操作,如前进、后退、刷新、停止等,并且还能够响应各种事件,如页面加载完成、链接点击等。 在易语言中实现IE浏览框,通常需要以下几个步骤: 1. 引入易核心支持库:首先需要在易语言的开发环境中引入易核心支持库,这样才能在程序中使用库提供的功能。 2. 创建浏览器控件:使用易核心支持库提供的API,创建一个浏览器控件实例。在这个过程中,可以设置控件的初始大小、位置等属性。 3. 加载网页:将浏览器控件与一个网页地址关联起来,即可在控件中加载显示网页内容。 4. 控制浏览器行为:通过易核心支持库提供的接口,可以控制浏览器的行为,如前进、后退、刷新页面等。同时,也可以响应浏览器事件,实现自定义的交互逻辑。 5. 调试和优化:在开发完成后,需要对IE浏览框进行调试,确保其在不同的操作和网页内容下均能够正常工作。对于性能和兼容性的问题需要进行相应的优化处理。 易语言的易核心支持库使得在易语言环境下实现IE浏览框变得非常方便,它极大地降低了开发难度,并且提高了开发效率。由于易语言的易用性,即使是初学者也能够在短时间内学会如何创建和操作IE浏览框,实现网页浏览的功能。 需要注意的是,由于IE浏览器已经逐渐被微软边缘浏览器(Microsoft Edge)所替代,使用IE核心的技术未来可能面临兼容性和安全性的挑战。因此,在实际开发中,开发者应考虑到这一点,并根据需求选择合适的浏览器控件实现技术。 此外,易语言虽然简化了编程过程,但其在功能上可能不如主流的编程语言(如C++, Java等)强大,且社区和技术支持相比其他语言可能较为有限,这些都是在选择易语言作为开发工具时需要考虑的因素。 文件名列表中的“IE类”可能是指包含实现IE浏览框功能的类库或者示例代码。在易语言中,类库是一组封装好的代码模块,其中包含了各种功能的实现。通过在易语言项目中引用这些类库,开发者可以简化开发过程,快速实现特定功能。而示例代码则为开发者提供了具体的实现参考,帮助理解和学习如何使用易核心支持库来创建IE浏览框。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)

![STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)](https://tapit.vn/wp-content/uploads/2019/01/cubemx-peripheral-1024x545.png) # 摘要 本文全面介绍了STM32F407ZG微控制器的引脚特性、功能、配置和应用。首先概述了该芯片的引脚布局,然后详细探讨了标准外设、高级控制以及特殊功能引脚的不同配置和使用方法。在此基础上,文章深入分析了引脚模式配置、高级配置技巧,并提供了实际应用案例,如LED控制和串口通信。在设计方面,阐述了引脚布局策略、多层板设计及高密度引脚应用的解决方案。最后,介绍
recommend-type

给出文档中问题的答案代码

您提到的是需要编写MATLAB代码来实现文档中的实验任务。以下是根据文档内容编写的MATLAB代码示例: ```matlab % 上机2 实验代码 % 读取输入图像 inputImage = imread('your_face_image.jpg'); % 替换为您的图像文件路径 if size(inputImage, 1) < 1024 || size(inputImage, 2) < 1024 error('图像尺寸必须大于1024x1024'); end % 将彩色图像转换为灰度图像 grayImage = rgb2gray(inputImage); % 调整图像大小为5
recommend-type

Docker构建与运行Next.js应用的指南

资源摘要信息:"rivoltafilippo-next-main" 在探讨“rivoltafilippo-next-main”这一资源时,首先要从标题“rivoltafilippo-next”入手。这个标题可能是某一项目、代码库或应用的命名,结合描述中提到的Docker构建和运行命令,我们可以推断这是一个基于Docker的Node.js应用,特别是使用了Next.js框架的项目。Next.js是一个流行的React框架,用于服务器端渲染和静态网站生成。 描述部分提供了构建和运行基于Docker的Next.js应用的具体命令: 1. `docker build`命令用于创建一个新的Docker镜像。在构建镜像的过程中,开发者可以定义Dockerfile文件,该文件是一个文本文件,包含了创建Docker镜像所需的指令集。通过使用`-t`参数,用户可以为生成的镜像指定一个标签,这里的标签是`my-next-js-app`,意味着构建的镜像将被标记为`my-next-js-app`,方便后续的识别和引用。 2. `docker run`命令则用于运行一个Docker容器,即基于镜像启动一个实例。在这个命令中,`-p 3000:3000`参数指示Docker将容器内的3000端口映射到宿主机的3000端口,这样做通常是为了让宿主机能够访问容器内运行的应用。`my-next-js-app`是容器运行时使用的镜像名称,这个名称应该与构建时指定的标签一致。 最后,我们注意到资源包含了“TypeScript”这一标签,这表明项目可能使用了TypeScript语言。TypeScript是JavaScript的一个超集,它添加了静态类型定义的特性,能够帮助开发者更容易地维护和扩展代码,尤其是在大型项目中。 结合资源名称“rivoltafilippo-next-main”,我们可以推测这是项目的主目录或主仓库。通常情况下,开发者会将项目的源代码、配置文件、构建脚本等放在一个主要的目录中,这个目录通常命名为“main”或“src”等,以便于管理和维护。 综上所述,我们可以总结出以下几个重要的知识点: - Docker容器和镜像的概念以及它们之间的关系:Docker镜像是静态的只读模板,而Docker容器是从镜像实例化的动态运行环境。 - `docker build`命令的使用方法和作用:这个命令用于创建新的Docker镜像,通常需要一个Dockerfile来指定构建的指令和环境。 - `docker run`命令的使用方法和作用:该命令用于根据镜像启动一个或多个容器实例,并可指定端口映射等运行参数。 - Next.js框架的特点:Next.js是一个支持服务器端渲染和静态网站生成的React框架,适合构建现代的Web应用。 - TypeScript的作用和优势:TypeScript是JavaScript的一个超集,它提供了静态类型检查等特性,有助于提高代码质量和可维护性。 - 项目资源命名习惯:通常项目会有一个主目录,用来存放项目的源代码和核心配置文件,以便于项目的版本控制和团队协作。 以上内容基于给定的信息进行了深入的分析,为理解该项目的构建、运行方式以及技术栈提供了基础。在实际开发中,开发者应当参考更详细的文档和指南,以更高效地管理和部署基于Docker和TypeScript的Next.js项目。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依