51单片机超声波1602lcd

时间: 2023-12-06 11:00:47 浏览: 27
51单片机超声波1602lcd是一种技术组合应用,常用于测距和显示信息的装置。 51单片机是一种基于Intel 8051架构的微控制器,具有强大的处理能力和丰富的外设接口,被广泛应用于嵌入式系统和电子设备中。 超声波测距原理是利用超声波的传播速度和回传时间差来计算距离。超声波传感器通过发射一束超声波脉冲并捕获其回波,可以实现非接触式的距离测量。其测距精度高,稳定性好,被广泛应用于智能车、智能家居等领域。 1602lcd是一种16x2字符液晶显示屏,可以显示16列2行的字符。它采用液晶技术,通过调节液晶分子的排列状态来显示不同的字符和图形。它具有显示内容清晰、占用空间小、功耗低等优点,常用于信息显示和交互界面设计。 当51单片机与超声波传感器和1602lcd进行组合应用时,可以实现测量距离并将结果显示在液晶屏上的功能。单片机通过接收超声波回波的时间差来计算出距离值,然后将结果通过lcd显示出来。这样的装置可以广泛应用于智能测距仪、智能停车系统等场景,提高了测距的精度和准确性。 总之,51单片机超声波1602lcd是一种常用的组合应用,可以实现测距和信息显示等功能,具有广泛的应用前景。
相关问题

51单片机超声波测距lcd1602显示

实现51单片机超声波测距并将结果显示到LCD1602上,具体步骤如下: 1. 确定超声波测距模块的接口,一般包括Trig引脚、Echo引脚和Vcc、GND两个电源引脚。 2. 在51单片机上选择一个IO口作为Trig引脚,通过程序将该IO口输出高电平信号,持续10us,然后将其拉低。 3. 监听Echo引脚的电平变化,当Echo引脚变为高电平时,开始计时,并记录当前时间。 4. 当Echo引脚变为低电平时,停止计时,并根据计时结果计算出距离值。 5. 将距离值转化为字符串,并将其通过LCD1602显示出来。 下面是一个简单的示例代码,供参考: ```c #include <reg52.h> #include <intrins.h> #include <stdio.h> #define LCD_RS P2_0 #define LCD_RW P2_1 #define LCD_EN P2_2 #define LCD_DATA P0 sbit TRIG = P3^1; sbit ECHO = P3^2; unsigned int distance = 0; void delay_us(unsigned int t) { while(t--) { _nop_(); _nop_(); _nop_(); _nop_(); } } void delay_ms(unsigned int t) { while(t--) { delay_us(1000); } } void LCD_SendCmd(unsigned char cmd) { LCD_RS = 0; LCD_RW = 0; LCD_DATA = cmd; LCD_EN = 1; delay_us(1); LCD_EN = 0; delay_ms(2); } void LCD_SendData(unsigned char dat) { LCD_RS = 1; LCD_RW = 0; LCD_DATA = dat; LCD_EN = 1; delay_us(1); LCD_EN = 0; delay_ms(2); } void LCD_Init() { LCD_SendCmd(0x38); // 8位数据总线,2行显示,5x7点阵字符 LCD_SendCmd(0x0c); // 显示开,光标关,光标闪烁关 LCD_SendCmd(0x06); // 光标右移,字符不移动 LCD_SendCmd(0x01); // 清屏 delay_ms(2); } void Usart_SendString(char* str) { while(*str) { SBUF = *str++; while(!TI); TI = 0; } } void Usart_Init() { TMOD = 0x20; // 定时器1工作在方式2,8位自动重装载模式 TH1 = 0xfd; // 波特率9600 TL1 = 0xfd; TR1 = 1; // 启动定时器1 SM0 = 0; SM1 = 1; // 串口工作在方式1,波特率可变 REN = 1; // 允许接收 EA = 1; // 开启全局中断 ES = 1; // 开启串口中断 } void main() { char buf[16]; LCD_Init(); Usart_Init(); while(1) { TRIG = 1; delay_us(10); TRIG = 0; while(!ECHO); TH0 = 0; TL0 = 0; while(ECHO); distance = (unsigned int)(TH0 << 8) | TL0; distance = distance / 58; sprintf(buf, "Distance: %d cm", distance); LCD_SendCmd(0x01); // 清屏 delay_ms(2); Usart_SendString(buf); LCD_SendCmd(0x80); // 第1行第1列 delay_ms(2); while(*buf) { LCD_SendData(*buf++); } } } void Serial_ISR() interrupt 4 { if(RI) { RI = 0; } if(TI) { TI = 0; } } ``` 注意:以上代码仅供参考,具体实现方式可能因硬件环境、编译器版本等因素而有所不同。在实际应用中,需要根据具体情况进行调整和优化。

51单片机超声波测距lcd1602显示代码csdn

### 回答1: 51单片机超声波测距lcd1602显示代码csdn是一种使用51单片机控制超声波测距并将结果显示在LCD1602屏幕上的代码。以下是一个简单的示例代码: #include <reg52.h> #include <intrins.h> #define LCD1602_DB P0 // LCD1602数据线 sbit LCD1602_RS = P2^0; // LCD1602命令选择位 sbit LCD1602_RW = P2^1; // LCD1602读写选择位 sbit LCD1602_E = P2^2; // LCD1602使能位 // 定义超声波测距管脚和命令 sbit TRIG = P3^0; // 超声波发射端口 sbit ECHO = P3^1; // 超声波接收端口 void delay(unsigned int i) { while(i--); } void LCD1602_WriteCmd(unsigned char command) { LCD1602_RS = 0; LCD1602_RW = 0; LCD1602_E = 1; LCD1602_DB = command; delay(5); LCD1602_E = 0; } void LCD1602_WriteData(unsigned char data) { LCD1602_RS = 1; LCD1602_RW = 0; LCD1602_E = 1; LCD1602_DB = data; delay(5); LCD1602_E = 0; } void LCD1602_Init() { LCD1602_WriteCmd(0x38); // 设置显示模式为2行5x7点阵 LCD1602_WriteCmd(0x0c); // 开启显示,无光标 LCD1602_WriteCmd(0x06); // 光标自动右移 LCD1602_WriteCmd(0x01); // 清屏 } void main() { unsigned int time; float distance; char str[16]; LCD1602_Init(); while(1) { // 初始化超声波测距 TRIG = 0; delay(10); TRIG = 1; _nop_(); _nop_(); TRIG = 0; // 等待接收超声波回波时间 while(!ECHO); while(ECHO); // 计算距离并显示 time = TH0 * 256 + TL0; distance = (float)(time * 1.73 / 100); sprintf(str, "Distance: %.2fcm", distance); LCD1602_WriteCmd(0x80); // 光标移动到第一行 for(int i = 0; i < 16; i++) { LCD1602_WriteData(str[i]); } delay(100); } } 这段代码使用了51单片机的GPIO口来控制LCD1602显示屏和超声波传感器。通过发送触发脉冲,并对接收脉冲的持续时间进行测量,计算出距离,并将结果显示在LCD1602屏幕上。这个代码需要先初始化LCD1602,并通过计时器来测量超声波回波时间,进而计算距离。最后通过sprintf函数将测得的距离格式化成字符串,并逐个字符地发送到LCD1602屏幕上进行显示。代码中的注释会帮助理解代码的具体实现。 ### 回答2: 51单片机超声波测距是一种常见的测距方法,它通过发射超声波,利用声波的传播时间来计算距离。在这个过程中,我们可以使用LCD1602显示屏来实时显示测量到的距离。以下是一个简单的51单片机超声波测距和LCD1602显示的代码示例: ```c #include<reg51.h> #include<intrins.h> #define LCD_DataPort P0 // LCD 数据端口定义 sbit TRIG = P1^0; // 超声波测距(TRIG)引脚定义 sbit E = P2^7; // LCD1602的E引脚定义 sbit RW = P2^6; // LCD1602的RW引脚定义 sbit RS = P2^5; // LCD1602的RS引脚定义 // 延时函数 void DelayUs2x(unsigned char t) { while (--t); } // LCD 检测忙函数 unsigned char LCD_CheckBusy() { unsigned char sta; LCD_DataPort = 0xFF; // 数据端口设为输入 RS = 0; // 准备读取状态 RW = 1; E = 1; // 使能禁止 _nop_(); // 空操作 sta = LCD_DataPort; // 读取状态 E = 0; // 使能使能 return (sta & 0x80); // 读取忙状态位 } // 写指令函数 void LCD_WriteCommand(unsigned char CMD) { while (LCD_CheckBusy()); // 检测忙状态 RS = 0; // 指令模式 RW = 0; // 写模式 E = 1; // 使能允许 LCD_DataPort = CMD; // 写入指令 DelayUs2x(5); E = 0; // 使能禁止 } // 写数据函数 void LCD_WriteData(unsigned char Data) { while (LCD_CheckBusy()); // 检测忙状态 RS = 1; // 数据模式 RW = 0; // 写模式 E = 1; // 使能允许 LCD_DataPort = Data; // 写入数据 DelayUs2x(5); E = 0; // 使能禁止 } // 初始化函数 void LCD_Init() { LCD_WriteCommand(0x38); // 8位、2行显示、5x7点阵字体 LCD_WriteCommand(0x0C); // 显示开、光标关闭、闪烁关闭 LCD_WriteCommand(0x06); // 字符指针自增、显示不移位 LCD_WriteCommand(0x01); // 清屏 LCD_WriteCommand(0x80); // 设置字符显示的首地址 } // 将数值转为字符串 void LCD_DisplayValue(unsigned int Value) { unsigned char StrBuf[6]; StrBuf[0] = Value / 10000 + 0x30; StrBuf[1] = Value / 1000 % 10 + 0x30; StrBuf[2] = Value / 100 % 10 + 0x30; StrBuf[3] = Value / 10 % 10 + 0x30; StrBuf[4] = Value % 10 + 0x30; StrBuf[5] = '\0'; LCD_WriteCommand(0x80 | 0x40); // 设置显示地址为第二行起始地址 for (unsigned char i = 0; i < 5; i++) { LCD_WriteData(StrBuf[i]); } } void main() { unsigned int distance; LCD_Init(); while (1) { // 发送超声波信号 TRIG = 1; _nop_(); TRIG = 0; // 等待超声波返回 while (!P1^1); TH0 = TL0 = 0; // 计时器清零 while (P1^1); TR0 = 1; // 计时器开始计时 // 根据计时器值计算距离 if (TF0) { distance = 0xFFFF; } else { distance = (TH0 * 256 + TL0) / 58; } // 显示距离 LCD_DisplayValue(distance); DelayMs(200); } } ``` 以上代码是一个简单的51单片机超声波测距和LCD1602显示的例子。在此代码中,我们首先初始化了LCD1602显示屏,然后在一个循环中发送超声波信号并计时器计时,而后根据计时器值计算出距离并在LCD1602显示屏上显示出来。

相关推荐

最新推荐

recommend-type

机械设计家用手摇面条机sw18可编辑非常好的设计图纸100%好用.zip

机械设计家用手摇面条机sw18可编辑非常好的设计图纸100%好用.zip
recommend-type

机械设计托盘库推车sw12可编辑非常好的设计图纸100%好用.zip

机械设计托盘库推车sw12可编辑非常好的设计图纸100%好用.zip
recommend-type

node-v12.18.4-linux-arm64.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

YOLOV5 分类实战:7种小麦叶片病害分类

YOLOV5 实战对小麦叶片病害检测分类数据集,包含代码、数据集、训练好的权重参数,经测试,代码可以直接使用。 【yolov5】项目总大小:300MB 训练了10个epoch,top1准确度分别达到了0.93+。这里仅仅训练了10个epoch,网络还没收敛,加大轮次可以获取更高的网络性能 【如何训练】摆放好datasets数据,即可训练 更多yolov5改进介绍、或者如何训练,请参考: https://blog.csdn.net/qq_44886601/category_12605353.html
recommend-type

单片机课程实验-秒表实现

1.了解LED数码管的工作原理,为秒表时钟模块的实现打下基础。 LED数码管是一种常用的数字显示器件,通过控制每个LED的亮灭来显示数字。在秒表时钟模块中,我们需要利用LED数码管的这一特性,通过单片机控制数码管的显示,从而实现时钟的功能。因此,了解LED数码管的工作原理对于实现秒表时钟模块至关重要。 2.掌握51单片机与LED数码管的接口技术,是实现秒表时钟模块的关键。 51单片机是一种常用的微控制器,可以通过接口与外部设备进行通信。在秒表时钟模块中,我们需要通过单片机与LED数码管之间的接口,控制数码管的显示。因此,掌握51单片机与LED数码管的接口技术是实现秒表时钟模块的关键。在实际操作中,我们需要根据接口协议和数据传输方式,编写相应的程序来控制数码管的显示。 3.合理利用定时器/计数器,是实现秒表时钟模块的效率保障。 在秒表时钟模块中,我们需要实现计时功能,这需要使用到定时器/计数器。定时器/计数器可以用来产生计时脉冲,从而控制秒表的计时。通过合理利用定时器/计数器,可以提高秒表时钟模块的计时精度和效率。在实际操作中,我们需要根据具体的应用场景和需求,选择合适的定时器/计数器参
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Redis验证与连接:安装成功验证技巧

![Redis从入门到精通](https://img-blog.csdnimg.cn/6f39d0a2adc3456b96e804eb45032480.png) # 1. Redis安装与验证** ### 2.2 Redis验证方法 Redis验证可以通过以下方法进行: - **命令行验证:** - 打开终端,输入 `redis-cli` 命令进入 Redis 命令行。 - 输入 `ping` 命令,如果返回 "PONG",则表示 Redis 正在运行。 - **客户端验证:** - 使用 Redis 客户端(如 RedisInsight)连接到 Redis 服务器。
recommend-type

3、自定义一个函数int compareStr(char *p1, char *p2),实现两个字符串的比较。相等返回0,大于返回1,小于返回0;编写主函数main()来调用自定义函数完成测试。

下面是自定义的 `compareStr` 函数的代码实现: ```c #include <stdio.h> int compareStr(char *p1, char *p2) { while (*p1 && *p2 && (*p1 == *p2)) { p1++; p2++; } return (*p1 > *p2) - (*p1 < *p2); } int main() { char str1[100], str2[100]; int result; printf("请输入第一个字符串:");
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。