解释以下代码cTime = micros(); // micros() return a uint32_t, but it is not usefull to keep the whole bits => we keep only 16 bits if (mask & 1<<2) { //indicates the bit 2 of the arduino port [D0-D7], that is to say digital pin 2, if 1 => this pin has just changed if (!(pin & 1<<2)) { //indicates if the bit 2 of the arduino port [D0-D7] is not at a high state (so that we match here only descending PPM pulse) dTime = cTime-edgeTime[2]; if (900<dTime && dTime<2200) rcValue[2] = dTime; // just a verification: the value must be in the range [1000;2000] + some margin } else edgeTime[2] = cTime; // if the bit 2 of the arduino port [D0-D7] is at a high state (ascending PPM pulse), we memorize the time } if (mask & 1<<4) { //same principle for other channels // avoiding a for() is more than twice faster, and it's important to minimize execution time in ISR if (!(pin & 1<<4)) { dTime = cTime-edgeTime[4]; if (900<dTime && dTime<2200) rcValue[4] = dTime; } else edgeTime[4] = cTime; } if (mask & 1<<5) { if (!(pin & 1<<5)) { dTime = cTime-edgeTime[5]; if (900<dTime && dTime<2200) rcValue[5] = dTime;//map(dTime,1016,2020,-128,128); } else edgeTime[5] = cTime; } if (mask & 1<<6) { if (!(pin & 1<<6)) { dTime = cTime-edgeTime[6]; if (900<dTime && dTime<2200) rcValue[6] = dTime;//map(dTime,1016,2020,-128,128); } else edgeTime[6] = cTime; }
时间: 2024-04-17 13:28:09 浏览: 141
这段代码用于处理引脚变化中断,并根据引脚状态的变化更新相应的数据。下面是对代码的逐行解释:
1. `cTime = micros();`:这一行调用`micros()`函数,获取当前的微秒计数值,并将其存储在变量`cTime`中。
2. `if (mask & 1<<2)`:这一行检查掩码的第2位是否为1,即判断引脚2是否发生了变化。
3. `if (!(pin & 1<<2))`:这一行判断引脚2是否处于低电平状态,以确定是否检测到了下降沿。
4. `dTime = cTime-edgeTime[2]; if (900<dTime && dTime<2200) rcValue[2] = dTime;`:这一行计算引脚2变化的时间间隔,并将其存储在变量`dTime`中。然后,它通过一些验证条件来检查时间间隔是否在特定范围内(900到2200之间),如果是,则将时间间隔存储在数组`rcValue`的第2个元素中。
5. `else edgeTime[2] = cTime;`:如果引脚2处于高电平状态,即检测到上升沿,则将当前时间存储在`edgeTime[2]`中。
类似的方式,代码块处理了引脚4、5和6的变化,并相应地更新了数据。
综上所述,这段代码用于处理引脚变化中断,并根据引脚状态的变化更新相应的数据。它通过比较时间间隔和验证条件来确定有效的引脚变化,并将其存储在相应的数组中。
相关问题
解释以下代码ISR(PCINT2_vect) { uint8_t mask; uint8_t pin; uint16_t cTime,dTime; static uint16_t edgeTime[8]; static uint8_t PCintLast; pin = PIND; mask = pin ^ PCintLast; // doing a ^ between the current interruption and the last one indicates wich pin changed sei(); // re enable other interrupts at this point, the rest of this interrupt is not so time critical and can be interrupted safely PCintLast = pin; // we memorize the current state of all PINs [D0-D7] cTime = micros(); // micros() return a uint32_t, but it is not usefull to keep the whole bits => we keep only 16 bits if (mask & 1<<2) { //indicates the bit 2 of the arduino port [D0-D7], that is to say digital pin 2, if 1 => this pin has just changed if (!(pin & 1<<2)) { //indicates if the bit 2 of the arduino port [D0-D7] is not at a high state (so that we match here only descending PPM pulse) dTime = cTime-edgeTime[2]; if (900<dTime && dTime<2200) rcValue[2] = dTime; // just a verification: the value must be in the range [1000;2000] + some margin } else edgeTime[2] = cTime; // if the bit 2 of the arduino port [D0-D7] is at a high state (ascending PPM pulse), we memorize the time } if (mask & 1<<4) { //same principle for other channels // avoiding a for() is more than twice faster, and it's important to minimize execution time in ISR if (!(pin & 1<<4)) { dTime = cTime-edgeTime[4]; if (900<dTime && dTime<2200) rcValue[4] = dTime; } else edgeTime[4] = cTime; } if (mask & 1<<5) { if (!(pin & 1<<5)) { dTime = cTime-edgeTime[5]; if (900<dTime && dTime<2200) rcValue[5] = dTime;//map(dTime,1016,2020,-128,128); } else edgeTime[5] = cTime; } if (mask & 1<<6) { if (!(pin & 1<<6)) { dTime = cTime-edgeTime[6]; if (900<dTime && dTime<2200) rcValue[6] = dTime;//map(dTime,1016,2020,-128,128); } else edgeTime[6] = cTime; } }
这段代码是一个中断服务程序(ISR),它处理引脚变化中断(Pin Change Interrupt)。下面是对代码的逐行解释:
1. `uint8_t mask;`、`uint8_t pin;`、`uint16_t cTime, dTime;`:定义了一些变量,用于存储引脚状态和时间信息。
2. `static uint16_t edgeTime[8];`、`static uint8_t PCintLast;`:定义了静态变量,用于存储引脚状态的变化时间和上一次中断时的引脚状态。
3. `pin = PIND;`:将当前的PORTD引脚状态读取到变量`pin`中。
4. `mask = pin ^ PCintLast;`:通过对当前引脚状态和上一次中断时的引脚状态进行异或操作,得到一个表示哪些引脚发生了变化的掩码。
5. `sei();`:重新开启其他中断。在这一点上,该中断的剩余部分不那么时间关键,可以安全地被其他中断打断。
6. `PCintLast = pin;`:将当前引脚状态存储到静态变量`PCintLast`中,以备下一次中断时使用。
7. `cTime = micros();`:获取当前的微秒计数值,存储在变量`cTime`中。
8. 下面的代码块通过检查掩码的各位来确定哪些引脚发生了变化,并根据变化的类型(上升沿或下降沿)更新相应的数据。
- `if (mask & 1<<2)`:检查第2位是否为1,即引脚2是否发生了变化。
- `if (!(pin & 1<<2))`:检查引脚2是否处于低电平状态,即检测到下降沿。
- `dTime = cTime-edgeTime[2]; if (900<dTime && dTime<2200) rcValue[2] = dTime;`:计算引脚2变化的时间间隔,并将其存储在变量`dTime`中。如果`dTime`的值在900和2200之间,就将其存储在数组`rcValue`的第2个元素中。
- `else edgeTime[2] = cTime;`:如果引脚2处于高电平状态,即检测到上升沿,则将当前时间存储在`edgeTime[2]`中。
通过类似的方式,代码块处理了引脚4、5和6的变化,并相应地更新了数据。
综上所述,这段代码是一个中断服务程序,用于处理引脚变化中断。它根据引脚的上升沿和下降沿来更新相应的数据,并将其存储在相应的数组中。
void S1mmeSession::CtEncodeKqi(S1MMEKQI* kqi, S1APNode* p_node, uint8_t worker_id) { MsgCommonInfo& common = p_node->GetCommonInfo(); SPUserInfo& sp_user_info = p_node->GetUserInfo(); //获取 buf TlvEncoder* p_encoder_cur = g_p_encoder_[worker_id]; YdCDR_T* p_dst_data = (YdCDR_T*)malloc(sizeof(YdCDR_T)); if (p_dst_data == NULL) { return; } p_dst_data->not_associate = 0; if ((common.not_associate & 0x03) == 0x03) p_dst_data->not_associate = 1; p_encoder_cur->Set(p_dst_data->cdr_data,kMaxOneCdrBufLen); uint64_t imsi = sp_user_info->GetIMSI(); if(common.eci == 0) { common.eci = sp_user_info->GetEci(); } uint16_t tmp_enbid = common.tac;//>>8; //uint32_t tmp_enbid = (common.eci >> 8)&0xfffff; char xdrid_str[32]={0}; #ifdef OPEN_NEW_HUISU convert_xdrid_to_string(xdrid_str, kqi->xdrid, s_xdr_id_len); #else #ifdef OPENCTPR g4sigtran::pr::ProcBlock* p_blk = kqi->binary_block_in_xdr_.GetBlock(); p_blk->SerializeXid(xdrid_str, sizeof(xdrid_str)); #else uint64_t subcdrid = g_ct_xdr_id.GetXid(); //reverse subend; if(::is_open_reverse) { SetReverseSubend(p_node, subcdrid); } #ifdef ONE_THIRD_YUNNAN_MRO g_ct_xdr_id.Serialize((uint8_t*)xdrid_str, s_xdr_id_len, imsi); #else g_ct_xdr_id.Serialize((uint8_t*)xdrid_str, s_xdr_id_len); #endif #endif #endif struct timespec start_time = kqi->request_time_, end_time = kqi->response_time_; if (kqi->request_time_.tv_sec == 0) { if (!(kqi->response_time_.tv_sec == 0)) { start_time = kqi->response_time_; } else if (!(kqi->complete_time_.tv_sec == 0)) { start_time = kqi->complete_time_; } }要求:在S1mmeSession::CtEncodeKqi函数后面新加一个函数,来维护一组key、value的关系。 key为:imsi value为:imsi、imei、common.eci、common.tac、last_time 当imsi相同时,以最后一条记录的value内容为准进行保存;imsi不同时直接插入。请用C++实现该功能,需要用到哈希的知识点
像进行JPEG解压缩,并将解压缩后的图像存储到视频文件中。
```matlab
outputVideo =好的,根据您的要求,我可以为您提供以下C++代码来实现所需功能,其中使用了哈希表来维护key-value关系:
#include <unordered_map>
#include <ctime>
struct KqiInfo {
uint64 VideoWriter('compressed.avi');
open(outputVideo);
for k = 1:numFrames
decoded_img = decoded_imgs{k};
% 调_t imsi;
uint64_t imei;
uint32_t eci;
uint16_t tac;
timespec last_time;
};
std::unordered_map<uint64_t, KqiInfo> kqi_map;
void update_kqi_map(S1MMEKQI用jpegdec函数进行JPEG解压缩
img = jpegdec(decoded_img);
writeVideo(outputVideo,img);
end
close(output* kqi, S1APNode* p_node) {
MsgCommonInfo& common = p_node->GetCommonInfo();
SPUserInfo& sp_user_info = p_node->GetUserInfo();
uint64_t imsi = sp_user_info->GetIMSI();
uintVideo);
```
完整的代码如下:
```matlab
% 读取视频文件并将每一帧图像进行64_t imei = sp_user_info->GetIMEI();
uint32_t eci = common.eci;
uint16_t tacJPEG压缩
vidObj = VideoReader('sample.avi');
numFrames = vidObj.NumberOfFrames;
for k = 1:numFrames = common.tac;
timespec now;
clock_gettime(CLOCK_REALTIME, &now);
KqiInfo kqi_info = {imsi, imei, eci, tac, now};
kqi_map[imsi] = kqi_info;
}
在
img = read(vidObj, k);
compressed_img = jpegenc(img); % 调用jpegenc函数进行JPEG压缩原有的S1mmeSession::CtEncodeKqi函数中,调用update_kqi_map函数即可将相关信息保存到哈希表中。如果imsi已经存在,会自动覆盖原有记录;如果imsi不存在,则新,返回压缩后的图像
% 将压缩后的图像存储到数组中,用于后续的建一条记录。需要注意的是,本代码中使用的哈希表默认使用std::hash函数进行哈希,如果需要自定义哈希函数可以通过std::unordered_map的第三个模板参数传入。
阅读全文