<param name="baseAngle" value="0.0"/>

时间: 2023-07-06 11:32:29 浏览: 33
这是一个ROS的launch文件中的一个参数设置,具体包括: 1. name:"baseAngle"表示小车的基础角度。 2. value:设置小车的基础角度,这里为0.0。 该参数用于控制小车的基础角度,一般是指小车在没有任何转弯的情况下所处的朝向角度。在实际应用中,可以根据需要调整该参数的值,以实现小车的不同朝向和转弯方向。同时需要注意,小车的实际角度还受到其他因素的影响,如转向舵机的精度、轮胎的摩擦力等,因此需要结合实际情况进行调整。
相关问题

<xacro:macro name="Livox_Mid_gazebo_sensor" params="visualize:=True update_rate:=10 resolution:=0.002 noise_mean:=0.0 noise_stddev:=0.01 name:=livox"> <gazebo reference="${name}"> <sensor type="ray" name="laser_${name}"> <pose>0 0 0 0 0 0</pose> <visualize>${visualize}</visualize> <update_rate>${update_rate}</update_rate> <!-- This ray plgin is only for visualization. --> <plugin name="gazebo_ros_laser_controller" filename="liblivox_laser_simulation.so"> <ray> <scan> <horizontal> <samples>100</samples> <resolution>1</resolution> <min_angle>${0}</min_angle> <max_angle>${2M_PI}</max_angle> </horizontal> <vertical> <samples>360</samples> <resolution>1</resolution> <min_angle>${-7.22/180M_PI}</min_angle> <max_angle>${55.22/180*M_PI}</max_angle> </vertical> </scan> <range> <min>${laser_min_range}</min> <max>${laser_max_range}</max> <resolution>${resolution}</resolution> </range> <noise> <type>gaussian</type> <mean>${noise_mean}</mean> <stddev>${noise_stddev}</stddev> </noise> </ray> <visualize>${visualize}</visualize> <samples>${samples}</samples> <downsample>${downsample}</downsample> <csv_file_name>/home/kuper/PX4_Firmware/Tools/sitl_gazebo/models/livox/scan_mode/mid360.csv</csv_file_name> <ros_topic>${ros_topic}</ros_topic> </plugin> </sensor> </gazebo> </xacro:macro>转为sdf格式

您可以使用xacro命令将该xacro宏转换为sdf格式,具体操作如下: 1. 创建一个包含xacro文件的包,并在该包中创建一个launch文件,用于将xacro转换为sdf格式。假设该包名为"livox_description",该xacro文件名为"livox_mid_gazebo_sensor.xacro",则可以在该包中创建一个名为"convert_xacro_to_sdf.launch"的文件,内容如下: ``` <launch> <arg name="model_name" default="livox" /> <arg name="xacro_file" default="$(find livox_description)/urdf/livox_mid_gazebo_sensor.xacro" /> <arg name="sdf_file" default="$(find livox_description)/urdf/livox_mid_gazebo_sensor.sdf" /> <xacro:macro name="livox_mid_gazebo_sensor" params="visualize:=True update_rate:=10 resolution:=0.002 noise_mean:=0.0 noise_stddev:=0.01 name:=livox"> <!-- xacro代码 --> </xacro:macro> <node name="xacro" pkg="xacro" type="xacro" args="$(arg xacro_file)"> <param name="visualize" value="$(arg visualize)" /> <param name="update_rate" value="$(arg update_rate)" /> <param name="resolution" value="$(arg resolution)" /> <param name="noise_mean" value="$(arg noise_mean)" /> <param name="noise_stddev" value="$(arg noise_stddev)" /> <param name="name" value="$(arg model_name)" /> <param name="laser_min_range" value="0.1" /> <param name="laser_max_range" value="100.0" /> <param name="samples" value="1000" /> <param name="downsample" value="1" /> <param name="ros_topic" value="/livox/point_cloud" /> <param name="ros_node_name" value="livox_mid_gazebo_sensor" /> <param name="csv_file_name" value="$(find livox_description)/models/livox/scan_mode/mid360.csv" /> </node> <node name="sdf" pkg="gazebo_ros" type="spawn_model" args="-sdf -file $(arg sdf_file) -model $(arg model_name)" /> </launch> ``` 2. 运行launch文件,使用gazebo的spawn_model命令将sdf模型加载到仿真环境中。您可以在终端中运行以下命令: ``` roslaunch livox_description convert_xacro_to_sdf.launch ``` 注意:需要将xacro代码中的参数值替换为实际的值。另外,如果xacro文件中使用了其他的xacro文件或包含其他的宏定义,则需要在launch文件中添加相应的参数和节点。

<param name="laser_likelihood_max_dist" value="2.0"/><!--机器人激光雷达数据与地图之间的匹配程度,机器人激光雷达数据在地图上搜索的最大距离--> <param name="update_min_d" value="0.1"/><!--机器人定位算法中的更新频率,移动的距离超过值后雷达进行一次更新--> <param name="update_min_a" value="0.1"/><!--机器人定位算法中的更新频率,移动的弧度超过这个值后雷达进行一次更新--> <param name="resample_interval" value="2"/><!--根据粒子的权重对粒子进行重新采样的频率--> <param name="transform_tolerance" value="0.1"/><!--机器人在进行位姿变换时,允许的最大误差范围--> <param name="recovery_alpha_slow" value="0.0"/><!--慢速恢复(slow recovery)过程中的旋转速度,运动过程中出现了位姿误差较大的情况,机器人定位算法会尝试通过慢速旋转来调整机器人的位姿,以减小位姿误差的影响,一般在0.1-0.5之间,--> <param name="recovery_alpha_fast" value="0.1"/><!--快速恢复(slow recovery)过程中的旋转速度,运动过程中出现了位姿误差较大的情况,机器人定位算法会尝试通过快速旋转来调整机器人的位姿,以减小位姿误差的影响,一般在0.1-0.5之间,--> <param name="use_map_topic" value="true"/><!--这个参数用于控制机器人定位算法是否使用地图话题来更新机器人的位姿--> <param name="first_map_only" value="false"/><!--控制机器人定位算法是否只使用第一次接收到的地图信息--> <param name="tf_broadcast" value="true"/> <param name="odom_frame_id" value="odom"/> <param name="global_frame_id" value="map"/> <param name="base_frame_id" value="base_footprint"/> <param name="odom_model_type" value="diff"/> <param name="initial_pose_x" value="$(arg init_x)"/> <param name="initial_pose_y" value="$(arg init_y)"/> <param name="initial_pose_a" value="$(arg init_a)"/> <param name="initial_cov_xx" value="0.25" /> <param name="initial_cov_yy" value="0.25" /> <param name="initial_cov_aa" value="0.2" />

这段代码是ROS(机器人操作系统)中的一个配置文件,用于配置机器人定位算法(amcl)的参数。其中各个参数的含义如下: - laser_likelihood_max_dist:机器人激光雷达数据在地图上搜索的最大距离,用于计算机器人当前位置的可能性; - update_min_d:机器人定位算法中的更新频率,移动的距离超过该值后雷达进行一次更新; - update_min_a:机器人定位算法中的更新频率,移动的弧度超过该值后雷达进行一次更新; - resample_interval:根据粒子的权重对粒子进行重新采样的频率; - transform_tolerance:机器人进行位姿变换时,允许的最大误差范围; - recovery_alpha_slow:慢速恢复(slow recovery)过程中的旋转速度,用于调整机器人的位姿; - recovery_alpha_fast:快速恢复(fast recovery)过程中的旋转速度,用于调整机器人的位姿; - use_map_topic:控制机器人定位算法是否使用地图话题来更新机器人的位姿; - first_map_only:控制机器人定位算法是否只使用第一次接收到的地图信息; - tf_broadcast:控制机器人定位算法是否广播tf变换信息; - odom_frame_id:机器人里程计坐标系的名称; - global_frame_id:全局坐标系的名称; - base_frame_id:机器人底座坐标系的名称; - odom_model_type:机器人里程计模型的类型; - initial_pose_x,initial_pose_y,initial_pose_a:机器人初始位姿; - initial_cov_xx,initial_cov_yy,initial_cov_aa:机器人初始位姿的协方差矩阵。

相关推荐

最新推荐

recommend-type

grpcio-1.47.0-cp310-cp310-linux_armv7l.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

小程序项目源码-美容预约小程序.zip

小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序v
recommend-type

MobaXterm 工具

MobaXterm 工具
recommend-type

grpcio-1.48.0-cp37-cp37m-linux_armv7l.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

扁平风格PPT可修改ppt下载(11).zip

扁平风格PPT可修改ppt下载(11).zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。