geant4用G4Scintillation获取粒子打在闪烁体上的波形,并将输出的波形数据保存在txt文件中,用代码演示一下

时间: 2024-01-21 09:17:20 浏览: 23
以下是一个简单的示例代码,演示如何使用Geant4中的G4Scintillation模型获取闪烁体上的光信号,并将波形数据保存在txt文件中: ```cpp #include "G4Scintillation.hh" #include "G4Scintillation.hh" #include "G4OpticalPhoton.hh" #include "G4ParticleDefinition.hh" #include "G4ParticleTable.hh" #include "G4EmProcessSubType.hh" #include "G4OpBoundaryProcess.hh" #include "G4RunManager.hh" #include "G4Event.hh" #include "G4SDManager.hh" #include "G4HCofThisEvent.hh" #include "G4UnitsTable.hh" #include "G4SystemOfUnits.hh" #include "G4ThreeVector.hh" #include "G4ios.hh" #include <fstream> int main(int argc, char** argv) { // Initialize Geant4 run manager G4RunManager* runManager = new G4RunManager; // Create a scintillation process G4Scintillation* scintProcess = new G4Scintillation(); scintProcess->SetScintillationYieldFactor(1.0); scintProcess->SetTrackSecondariesFirst(true); scintProcess->SetVerboseLevel(0); // Register the scintillation process to the particle table G4ParticleTable* particleTable = G4ParticleTable::GetParticleTable(); G4ParticleDefinition* particle = particleTable->FindParticle("e-"); G4EmProcessSubType processType = fScintillation; G4ProcessManager* pmanager = particle->GetProcessManager(); pmanager->AddProcess(scintProcess, -1, 1, 1, processType); // Initialize the run manager runManager->Initialize(); // Create an optical photon G4ParticleDefinition* opticalPhoton = G4OpticalPhoton::OpticalPhotonDefinition(); // Create an event and a primary particle (an electron) G4Event* event = new G4Event(); G4PrimaryVertex* vertex = new G4PrimaryVertex(G4ThreeVector(0, 0, 0), 0); G4PrimaryParticle* particle = new G4PrimaryParticle(G4Electron::ElectronDefinition(), 1.0, 0.0, 0.0, G4ThreeVector(0, 0, -1)); vertex->SetPrimary(particle); event->AddPrimaryVertex(vertex); // Create a sensitive detector for the scintillation photons G4SDManager* sdManager = G4SDManager::GetSDMpointer(); G4String sdName = "ScintillatorSD"; ScintillatorSD* scintSD = new ScintillatorSD(sdName); sdManager->AddNewDetector(scintSD); // Set up the optical boundary processes G4OpBoundaryProcess* opBoundaryProcess = new G4OpBoundaryProcess(); opBoundaryProcess->SetVerboseLevel(0); // Generate the scintillation photons runManager->SetUserAction(new GenScintillationPhotons(event, opticalPhoton, scintProcess, opBoundaryProcess, scintSD)); // Run the simulation runManager->BeamOn(1); // Save the waveforms to a txt file std::ofstream outfile("waveform.txt"); for (int i = 0; i < scintSD->GetWaveformSize(); i++) { outfile << scintSD->GetWaveformValue(i) << std::endl; } outfile.close(); // Clean up delete runManager; delete event; delete vertex; delete particle; delete opticalPhoton; delete scintProcess; delete opBoundaryProcess; delete scintSD; return 0; } ``` 其中,`GenScintillationPhotons` 类是一个用户定义的类,用于在Geant4模拟中生成闪烁体上的光子,并将它们传递给一个敏感探测器。下面是这个类的代码: ```cpp class GenScintillationPhotons : public G4UserEventAction { public: GenScintillationPhotons(G4Event* anEvent, G4ParticleDefinition* optPhotonDef, G4Scintillation* scintProcess, G4OpBoundaryProcess* opBoundaryProcess, ScintillatorSD* scintSD) : G4UserEventAction(), fEvent(anEvent), fOpticalPhoton(optPhotonDef), fScintProcess(scintProcess), fOpBoundaryProcess(opBoundaryProcess), fScintSD(scintSD) {} virtual ~GenScintillationPhotons() {} virtual void BeginOfEventAction(const G4Event* anEvent) { fScintSD->InitializeWaveform(); } virtual void EndOfEventAction(const G4Event* anEvent) { // Get the list of tracks in the event G4TrajectoryContainer* trajectoryContainer = anEvent->GetTrajectoryContainer(); std::vector<G4Track*> trackVector; for (int i = 0; i < trajectoryContainer->size(); i++) { G4Trajectory* trajectory = (*trajectoryContainer)[i]; if (trajectory->GetParentID() == 0) { trackVector.push_back(trajectory->GetTrack()); } } // Generate scintillation photons for each track for (int i = 0; i < trackVector.size(); i++) { G4Track* track = trackVector[i]; if (track->GetDefinition() == G4Electron::ElectronDefinition() && track->GetKineticEnergy() > 1.0 * keV) { GenerateScintillationPhotons(track); } } } private: void GenerateScintillationPhotons(G4Track* aTrack) { // Generate the scintillation photons G4StepPoint* preStepPoint = aTrack->GetStep()->GetPreStepPoint(); G4ThreeVector pos = preStepPoint->GetPosition(); G4ThreeVector dir = preStepPoint->GetMomentumDirection(); G4int nScintillationPhotons = fScintProcess->GetNumPhotons(); G4double scintillationTime = fScintProcess->GetMeanLifeTime(); G4double scintillationRiseTime = fScintProcess->GetScintillationRiseTime(); G4double scintillationDecayTime = fScintProcess->GetScintillationDecayTime(); for (int i = 0; i < nScintillationPhotons; i++) { // Generate a random direction for the photon G4double cosTheta = 2.0 * G4UniformRand() - 1.0; G4double sinTheta = std::sqrt(1.0 - cosTheta * cosTheta); G4double phi = 2.0 * M_PI * G4UniformRand(); G4ThreeVector photonDir(sinTheta * std::cos(phi), sinTheta * std::sin(phi), cosTheta); // Generate a random time for the photon G4double photonTime = preStepPoint->GetGlobalTime() + G4RandExponential::shoot(scintillationTime); // Generate a random energy for the photon G4double photonEnergy = G4RandGauss::shoot(1.0 * eV, 0.1 * eV); // Create the photon and set its properties G4DynamicParticle* photon = new G4DynamicParticle(fOpticalPhoton, photonDir, photonEnergy); photon->SetParentID(aTrack->GetTrackID()); // Add the photon to the event G4PrimaryVertex* vertex = new G4PrimaryVertex(pos, photonTime); vertex->SetPrimary(new G4PrimaryParticle(photon)); fEvent->AddPrimaryVertex(vertex); // Add the photon to the waveform fScintSD->AddWaveformValue(photonTime, photonEnergy, scintillationRiseTime, scintillationDecayTime); } } G4Event* fEvent; G4ParticleDefinition* fOpticalPhoton; G4Scintillation* fScintProcess; G4OpBoundaryProcess* fOpBoundaryProcess; ScintillatorSD* fScintSD; }; ``` 其中,`ScintillatorSD` 类是一个用户定义的类,用于在Geant4模拟中保存闪烁体上的光信号波形。下面是这个类的代码: ```cpp class ScintillatorSD : public G4VSensitiveDetector { public: ScintillatorSD(const G4String& name) : G4VSensitiveDetector(name), fWaveformSize(0) { for (int i = 0; i < WAVEFORM_SIZE; i++) { fWaveform[i] = 0.0; } } virtual ~ScintillatorSD() {} virtual void Initialize(G4HCofThisEvent*) { fWaveformSize = 0; for (int i = 0; i < WAVEFORM_SIZE; i++) { fWaveform[i] = 0.0; } } virtual G4bool ProcessHits(G4Step* aStep, G4TouchableHistory*) { return true; } void AddWaveformValue(G4double time, G4double amplitude, G4double riseTime, G4double decayTime) { // Calculate the index of the first waveform bin that overlaps with this photon G4int startIndex = std::max(0.0, std::floor((time - 5.0 * decayTime) / WAVEFORM_TIME_STEP)); // Calculate the index of the last waveform bin that overlaps with this photon G4int endIndex = std::min(WAVEFORM_SIZE - 1.0, std::ceil((time + 5.0 * riseTime) / WAVEFORM_TIME_STEP)); // Add the waveform values for this photon to the appropriate bins for (int i = startIndex; i <= endIndex; i++) { G4double t = i * WAVEFORM_TIME_STEP; fWaveform[i] += amplitude * std::exp(-(t - time) / decayTime) * (1.0 - std::exp(-(t - time) / riseTime)); } // Update the waveform size fWaveformSize = std::max(fWaveformSize, endIndex + 1); } void InitializeWaveform() { fWaveformSize = 0; for (int i = 0; i < WAVEFORM_SIZE; i++) { fWaveform[i] = 0.0; } } G4int GetWaveformSize() const { return fWaveformSize; } G4double GetWaveformValue(G4int index) const { return fWaveform[index]; } private: static const G4int WAVEFORM_SIZE = 10000; static const G4double WAVEFORM_TIME_STEP = 0.01 * ns; G4double fWaveform[WAVEFORM_SIZE]; G4int fWaveformSize; }; ``` 在这个示例代码中,我们使用了一个简单的敏感探测器 `ScintillatorSD`,它保存了一个大小为10000的数组,用于存储光信号波形。每个光子在产生时都会调用 `AddWaveformValue` 函数,该函数将光子的波形值添加到数组中。在模拟结束时,我们将数组中的所有值写入一个名为 "waveform.txt" 的文本文件中,以便后续分析。

相关推荐

最新推荐

recommend-type

基于SpringBoot框架仿stackOverflow网站后台开发.zip

基于springboot的java毕业&课程设计
recommend-type

基于SpringBoot洗衣店管理系统.zip

基于springboot的java毕业&课程设计
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SQL怎么实现 数据透视表

SQL可以通过使用聚合函数和GROUP BY子句来实现数据透视表。 例如,假设有一个销售记录表,其中包含产品名称、销售日期、销售数量和销售额等信息。要创建一个按照产品名称、销售日期和销售额进行汇总的数据透视表,可以使用以下SQL语句: ``` SELECT ProductName, SaleDate, SUM(SaleQuantity) AS TotalQuantity, SUM(SaleAmount) AS TotalAmount FROM Sales GROUP BY ProductName, SaleDate; ``` 该语句将Sales表按照ProductName和SaleDat
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

使用vue3+elementsplus封装一个提示确认框的组件,要求将请求地址和确认框展示信息作为参数暴露出去

好的,下面是使用 Vue3 和 ElementPlus 封装一个提示确认框的组件,同时将请求地址和确认框展示信息作为参数暴露出去。 ```vue <template> <el-dialog title="确认提示" :visible.sync="dialogVisible" width="30%" :before-close="handleClose" > <p>{{ message }}</p> <span slot="footer" class="dialog-footer"> <el-button @click="di