X = X.reshape((-1, num_inputs)) 中 -1 什么意思
时间: 2024-01-24 18:18:53 浏览: 107
在Numpy中,reshape函数的参数中可以使用-1来表示该维度的大小由其他维度来自动推导得出。例如,如果有一个形状为(2, 3, 4)的张量X,我们想将其转换为形状为(6, 4)的张量,可以使用X.reshape((-1, 4)),其中-1表示第一维的大小由剩余的维度大小自动推导得出,即6 = 2 x 3。因此,-1的作用是让Numpy自动计算该维度的大小,以满足张量重塑后的总元素个数不变的要求。
相关问题
X = X.reshape((-1, num_inputs))
这段代码是在将矩阵 X 重塑为一个新的形状,其中第一个维度被设置为 -1,表示该维度的大小将会根据矩阵的总元素数和其他维度的大小自动推断出来,而第二个维度则被设置为 num_inputs,表示该维度的大小为 num_inputs。具体来说,该代码将原本形状为 (m, n) 的矩阵 X 重塑为形状为 (m // num_inputs, num_inputs) 的新矩阵,其中 // 表示整数除法。这个操作通常用于将图片等数据转换为神经网络的输入格式。
帮我设计一个代码,在#导入训练集和训练集对应的标签并将其初始化 X_train,T_train=idx2numpy.convert_from_file('emnist/emnist-letters-train-images-idx3-ubyte'),idx2numpy.convert_from_file('emnist/emnist-letters-train-labels-idx1-ubyte') X_train,T_train=X_train.copy(),T_train.copy() X_train=X_train.reshape((X_train.shape[0],-1)) T_train=T_train-1 T_train=np.eye(26)[T_train] #导入测试集和测试集对应的标签标签并将其初始化 X_test,T_test=idx2numpy.convert_from_file('emnist/emnist-letters-test-images-idx3-ubyte'),idx2numpy.convert_from_file('emnist/emnist-letters-test-labels-idx1-ubyte') X_test,T_test=X_test.copy(),T_test.copy() X_test=X_test.reshape((X_test.shape[0],-1)) T_test=T_test-1 T_test=np.eye(26)[T_test]后用人工神经网络识别手写字母
好的,以下是一个简单的人工神经网络识别手写字母的代码:
```python
import numpy as np
# 导入训练集和训练集对应的标签并将其初始化
X_train, T_train = idx2numpy.convert_from_file('emnist/emnist-letters-train-images-idx3-ubyte'), idx2numpy.convert_from_file('emnist/emnist-letters-train-labels-idx1-ubyte')
X_train, T_train = X_train.copy(), T_train.copy()
X_train = X_train.reshape((X_train.shape[0], -1))
T_train = T_train - 1
T_train = np.eye(26)[T_train]
# 导入测试集和测试集对应的标签标签并将其初始化
X_test, T_test = idx2numpy.convert_from_file('emnist/emnist-letters-test-images-idx3-ubyte'), idx2numpy.convert_from_file('emnist/emnist-letters-test-labels-idx1-ubyte')
X_test, T_test = X_test.copy(), T_test.copy()
X_test = X_test.reshape((X_test.shape[0], -1))
T_test = T_test - 1
T_test = np.eye(26)[T_test]
# 定义神经网络模型
class NeuralNetwork:
def __init__(self, num_inputs, num_hidden, num_outputs):
# 初始化权重
self.weights1 = np.random.randn(num_inputs, num_hidden)
self.weights2 = np.random.randn(num_hidden, num_outputs)
def sigmoid(self, x):
# sigmoid激活函数
return 1 / (1 + np.exp(-x))
def sigmoid_derivative(self, x):
# sigmoid函数的导数
return x * (1 - x)
def forward(self, X):
# 前向传播
self.hidden = self.sigmoid(np.dot(X, self.weights1))
self.output = self.sigmoid(np.dot(self.hidden, self.weights2))
return self.output
def backward(self, X, y, output):
# 反向传播
self.output_error = y - output
self.output_delta = self.output_error * self.sigmoid_derivative(output)
self.hidden_error = self.output_delta.dot(self.weights2.T)
self.hidden_delta = self.hidden_error * self.sigmoid_derivative(self.hidden)
self.weights1 += X.T.dot(self.hidden_delta)
self.weights2 += self.hidden.T.dot(self.output_delta)
def train(self, X, y):
# 训练模型
output = self.forward(X)
self.backward(X, y, output)
def predict(self, X):
# 预测
return np.argmax(self.forward(X), axis=1)
# 初始化神经网络
nn = NeuralNetwork(784, 50, 26)
# 训练神经网络
for i in range(1000):
nn.train(X_train, T_train)
# 在测试集上进行预测
predictions = nn.predict(X_test)
# 计算准确率
accuracy = np.mean(predictions == np.argmax(T_test, axis=1))
print("Accuracy:", accuracy)
```
代码中定义了一个包含一个隐藏层的神经网络模型,使用sigmoid激活函数和反向传播算法进行训练。在训练完成后,使用测试集进行预测,并计算准确率。注意,这里使用了`np.argmax`函数来将独热编码的标签转换为整数。
阅读全文