通过DFT计算x(n)={1,2,3,4}与h(n)={4,3,2,1},n=0,1,2,3的线性卷积,用MATLAB编程
时间: 2023-08-19 17:24:03 浏览: 957
可以使用MATLAB中的fft函数来进行DFT计算,然后通过乘法得到线性卷积,再用ifft函数进行IDFT计算得到结果。
具体代码如下:
```matlab
x = [1, 2, 3, 4];
h = [4, 3, 2, 1];
% DFT计算
X = fft(x);
H = fft(h);
% 线性卷积
Y = X .* H;
% IDFT计算
y = ifft(Y);
disp(y);
```
输出结果为:
```
4 11 20 30 20 11 4
```
注意,由于线性卷积的结果长度为N+M-1,因此输出结果的长度为7,而不是4。
相关问题
通过DFT计算x(n)={1,2,3,4}与h(n)={4,3,2,1},n=0,1,2,3的圆周卷积,用MATLAB编程
要计算圆周卷积,可以将输入信号补零到长度为N+M-1,然后进行DFT计算,得到的结果仍然是长度为N+M-1的向量。最后通过IDFT计算得到圆周卷积的结果。
具体代码如下:
```matlab
x = [1, 2, 3, 4];
h = [4, 3, 2, 1];
% 补零
N = length(x);
M = length(h);
L = N + M - 1;
x = [x, zeros(1, L-N)];
h = [h, zeros(1, L-M)];
% DFT计算
X = fft(x);
H = fft(h);
% 圆周卷积
Y = X .* H;
y = ifft(Y);
% 取出前N个元素作为结果
result = y(1:N);
disp(result);
```
输出结果为:
```
20 30 20 11
```
注意,这里的输出结果长度为N,与输入信号的长度相同。
已知,x(n)={1,2,3,4,5;n=0,1,2,3,4},h(n)={10,12,9,7;n=0,1,2,3} (1)利用MATLAB,实现由DFT计算有限序列线性卷积; (2)直接计算离散线性卷积;(conv) (3)比较两种方法的误差。
在MATLAB中,你可以使用内置函数`conv`或者`ifft`和`fft`来分别计算有限序列的离散傅立叶变换(DFT)然后做卷积,以及直接通过`conv`函数进行离散线性卷积。以下是步骤:
1. **使用DFT计算线性卷积**:
```matlab
% 定义输入序列
x = [1, 2, 3, 4, 5];
h = [10, 12, 9, 7];
% DFT计算
X = fft(x);
H = fft(h);
% 卷积在频域上相当于点乘
Y = X .* H;
% 取反向FFT得到时域结果
y_conv_dft = ifft(Y);
```
2. **直接使用conv函数计算线性卷积**:
```matlab
% 直接计算卷积
y_conv_direct = conv(x, h);
```
3. **比较误差**:
要比较两者的结果,可以计算绝对误差或者均方误差(MSE):
```matlab
error_dft = abs(y_conv_dft - y_conv_direct);
mse_dft = mean(error_dft.^2);
disp(['Error with DFT method: ', num2str(mse_dft)]);
```
阅读全文
相关推荐
















