return torch.cat((torch.max(x,1)[0].unsqueeze(1),torch.mean(x,1).unsqueeze(1)),dim=1)解释这行代码
时间: 2023-08-26 09:06:21 浏览: 78
这行代码是将输入 x 进行最大池化和平均池化操作,然后将结果按列连接起来,返回一个新的张量。具体解释如下:
- torch.max(x, 1)[0] 表示在输入张量 x 的第 1 维度上进行最大池化,得到每个样本的最大值,并且返回一个形状为 (batch_size,) 的张量。
- unsqueeze(1) 操作将形状为 (batch_size,) 的张量在第 1 维度上增加一维,变成形状为 (batch_size, 1) 的张量。
- torch.mean(x, 1) 表示在输入张量 x 的第 1 维度上进行平均池化,得到每个样本的平均值,并且返回一个形状为 (batch_size,) 的张量。
- unsqueeze(1) 操作将形状为 (batch_size,) 的张量在第 1 维度上增加一维,变成形状为 (batch_size, 1) 的张量。
- torch.cat((..., ...), dim=1) 表示按列连接两个形状为 (batch_size, 1) 的张量,得到形状为 (batch_size, 2) 的张量,并且返回这个新的张量。其中 dim=1 表示按列连接。
总的来说,这行代码的作用是将输入张量 x 进行最大池化和平均池化操作,得到每个样本的最大值和平均值,并将它们按列连接起来,得到一个新的张量。
相关问题
return torch.cat( (torch.max(x,1)[0].unsqueeze(1), torch.mean(x,1).unsqueeze(1)), dim=1 )什么意思
这行代码是将一个张量 x 沿着第一维度执行 max 操作,获取每个子列表中的最大值,再通过 unsqueeze 在第二个维度增加一个维度,变成二维张量。然后再执行 mean 操作,获取每个子列表的平均值,同样通过 unsqueeze 在第二个维度增加一个维度,变成二维张量。最后使用 torch.cat 函数沿着第二个维度将这两个二维张量拼接在一起。返回的是一个二维张量,第一个维度是输入张量的第一个维度,第二个维度是 2。
def forward(self, x): return torch.cat( (torch.max(x,1)[0].unsqueeze(1), torch.mean(x,1).unsqueeze(1)), dim=1)
这是一个 PyTorch 模型的前向传播函数,它接受一个输入张量 x,并返回一个由两个张量拼接而成的张量。第一个张量是输入张量的每行中最大值的张量,第二个张量是输入张量的每行的平均值的张量。具体来说,torch.max(x, 1) 返回每行中的最大值及其索引,然后使用 unsqueeze(1) 将其转换为列向量;torch.mean(x, 1) 返回每行的平均值,并使用 unsqueeze(1) 将其转换为列向量。最后使用 torch.cat 将这两个张量沿着列维度拼接在一起。
阅读全文