bboxes = np.vstack(bbox_result)
时间: 2024-04-26 21:23:59 浏览: 131
这段代码的作用是将 `bbox_result` 中的所有边界框合并成一个大的数组 `bboxes`,其中 `bbox_result` 是一个包含多个边界框的列表。具体来说,该函数使用 `np.vstack` 函数将 `bbox_result` 中的所有边界框按照行的方式进行堆叠,并返回一个新的数组。这样做的目的是为了方便后续对所有边界框进行批量处理,比如计算它们的重叠度或进行非极大值抑制等操作。
需要注意的是,由于 `bbox_result` 中的每个元素都是一个形如 `(N, 4)` 的数组,表示有 N 个边界框,每个边界框由 4 个坐标值构成,因此 `bboxes` 的形状为 `(M, 4)`,其中 `M` 是所有边界框的总数。
相关问题
bbox_offset = torch.stack(batch_offset) bbox_mask = torch.stack(batch_mask) class_labels = torch.stack(batch_class_labels)如何在这上面更改呢
如果你想对这个操作进行一些改变,你可以考虑以下几个选项:
1. **转换维度**:如果你希望堆叠后的结果有不同的形状或维度,可以在`stack`函数之前或之后添加其他操作,如`permute()`、`reshape()`等,调整batch元素的排列。
```python
# 先按某一维度合并,例如沿批次数维度堆叠
bbox_offset = batch_offset.permute(0, -1).stack()
bbox_mask = batch_mask.permute(0, -1).stack()
class_labels = batch_class_labels.permute(0, -1).stack()
# 或者先合并所有元素再调整形状
offset_stacked = torch.cat(batch_offset, dim=0)
mask_stacked = torch.cat(batch_mask, dim=0)
labels_stacked = torch.cat(batch_class_labels, dim=0)
offset_stacked = offset_stacked.reshape(-1, new_shape_for_offset)
mask_stacked = mask_stacked.reshape(-1, new_shape_for_mask)
labels_stacked = labels_stacked.reshape(-1, new_shape_for_labels)
```
2. **条件堆叠**:如果你只想针对满足特定条件的batch元素堆叠,可以添加一个条件判断或者使用`torch.where()`或`torch.masked_select()`。
```python
valid_idx = (batch_offset != some_value) & (batch_mask == True) # 示例条件
bbox_offset_valid = bbox_offset[valid_idx]
class_labels_valid = class_labels[valid_idx]
```
3. **使用循环**:如果每个batch元素需要独立的操作,可以用for循环遍历而不是一次性堆叠。
```python
new_offset_list = []
new_mask_list = []
new_labels_list = []
for i, (offset, mask, label) in enumerate(zip(batch_offset, batch_mask, batch_class_labels)):
new_offset_list.append(offset)
new_mask_list.append(mask)
new_labels_list.append(label)
bbox_offset = torch.stack(new_offset_list)
bbox_mask = torch.stack(new_mask_list)
class_labels = torch.stack(new_labels_list)
```
修改程序 if self.is_rotate_img_bbox: if random.random() > self.rotation_rate: # 旋转 change_num += 1 # angle = random.uniform(-self.max_rotation_angle, self.max_rotation_angle) angle = random.randrange(30, 360, 30) scale = random.uniform(0.8, 2) img, bboxes = self._rotate_img_bbox(img, bboxes, angle, scale),angle的返回值逐次增加30
修改后的代码将旋转角度(angle)的随机生成方式进行了修改。原来是使用random.uniform生成介于-self.max_rotation_angle和self.max_rotation_angle之间的随机角度,现在改为每次增加30度,从30度开始,直到360度。
修改后的代码如下:
```python
if self.is_rotate_img_bbox:
if random.random() > self.rotation_rate: # 旋转
change_num += 1
angle = random.randrange(30, 360, 30)
scale = random.uniform(0.8, 2)
img, bboxes = self._rotate_img_bbox(img, bboxes, angle, scale)
```
这样,每次生成的角度会逐次增加30度,从30度、60度、90度、... 直到360度。同时,保持了原来的比例因子(scale)的随机生成方式,仍然是在0.8和2之间生成一个随机数。最后,调用了修改后的`_rotate_img_bbox`方法进行图像和边界框的旋转操作。
阅读全文
相关推荐

















