def save_kitti_format(sample_id, calib, bbox3d, kitti_output_dir, scores, img_shape): corners3d = kitti_utils.boxes3d_to_corners3d(bbox3d) img_boxes, _ = calib.corners3d_to_img_boxes(角3d) img_boxes[:, 0] = np.clip(img_boxes[:, 0], 0, img_shape[1] - 1) img_boxes[:, 1] = np.clip(img_boxes[:, 1], 0, img_shape[0] - 1) img_boxes[:, 2] = np.clip(img_boxes[:, 2], 0, img_shape[1] - 1) img_boxes[:, 3] = np.clip(img_boxes[:, 3], 0, img_shape[0] - 1) img_boxes_w = img_boxes[:, 2] - img_boxes[:, 0] img_boxes_h = img_boxes[:, 3] - img_boxes[:, 1] box_valid_mask = np.logical_and(img_boxes_w < img_shape[1] * 0.8, img_boxes_h < img_shape[0] * 0.8) kitti_output_file = os.path.join(kitti_output_dir, '%06d.txt' % sample_id) with open(kitti_output_file, 'w') as f: for k in range(bbox3d.shape[0]): if box_valid_mask[k] == 0: continue x, z, ry = bbox3d[k, 0], bbox3d[k, 2], bbox3d[k, 6] beta = np.arctan2(z, x) alpha = -np.sign(beta) * np.pi / 2 + beta + ry print('%s -1 -1 %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f' % (cfg.CLASSES, alpha, img_boxes[k, 0], img_boxes[k, 1], img_boxes[k, 2], img_boxes[k, 3], bbox3d[k, 3], bbox3d[k, 4], bbox3d[k, 5], bbox3d[k, 0], bbox3d[k, 1], bbox3d[k, 2], bbox3d[k, 6], scores[k]), file=f)解释这段代码,并且根据已知的条件,已知sample_id, 点云的检测结果(x, y, z, w, h, l, yaw), kitti_output_dir, scores, img_shape,calib文件的路径且格式与 KITTI 数据集的标定文件格式相同,要求得到2D检测框的坐标,和alpha,仿写出Python函数,并给出示例
时间: 2024-04-08 18:35:19 浏览: 120
这段代码的功能是将检测结果保存为符合KITTI数据集格式的文件。
以下是根据已知条件编写的Python函数,用于获取2D检测框的坐标和alpha:
```python
import os
import numpy as np
def save_kitti_format(sample_id, calib, detection_result, kitti_output_dir, scores, img_shape):
bbox3d = np.array(detection_result)
corners3d = kitti_utils.boxes3d_to_corners3d(bbox3d)
img_boxes, _ = calib.corners3d_to_img_boxes(corners3d)
img_boxes[:, 0] = np.clip(img_boxes[:, 0], 0, img_shape[1] - 1)
img_boxes[:, 1] = np.clip(img_boxes[:, 1], 0, img_shape[0] - 1)
img_boxes[:, 2] = np.clip(img_boxes[:, 2], 0, img_shape[1] - 1)
img_boxes[:, 3] = np.clip(img_boxes[:, 3], 0, img_shape[0] - 1)
img_boxes_w = img_boxes[:, 2] - img_boxes[:, 0]
img_boxes_h = img_boxes[:, 3] - img_boxes[:, 1]
box_valid_mask = np.logical_and(img_boxes_w < img_shape[1] * 0.8, img_boxes_h < img_shape[0] * 0.8)
kitti_output_file = os.path.join(kitti_output_dir, '%06d.txt' % sample_id)
with open(kitti_output_file, 'w') as f:
for k in range(bbox3d.shape[0]):
if box_valid_mask[k] == 0:
continue
x, z, ry = bbox3d[k, 0], bbox3d[k, 2], bbox3d[k, 6]
beta = np.arctan2(z, x)
alpha = -np.sign(beta) * np.pi / 2 + beta + ry
print('%s -1 -1 %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f' %
(cfg.CLASSES, alpha, img_boxes[k, 0], img_boxes[k, 1], img_boxes[k, 2], img_boxes[k, 3],
bbox3d[k, 3], bbox3d[k, 4], bbox3d[k, 5], bbox3d[k, 0], bbox3d[k, 1], bbox3d[k, 2],
bbox3d[k, 6], scores[k]), file=f)
# Example usage
sample_id = 1
calib = Calib() # Assuming Calib is a class for loading calibration matrix from file
detection_result = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 0.785] # [x, y, z, w, h, l, yaw]
kitti_output_dir = 'path/to/kitti_output'
scores = [0.9, 0.8, 0.7] # Detection scores for each box
img_shape = (640, 480) # Image shape (width, height)
save_kitti_format(sample_id, calib, detection_result, kitti_output_dir, scores, img_shape)
```
请注意,上述代码中的 `Calib()` 类需要根据实际情况进行定义和实现,以便从标定文件中加载校准矩阵。你还需要将 `cfg.CLASSES` 替换为相应的类别名称。另外,确保 `kitti_output_dir` 目录存在,否则需要先创建它。
阅读全文