``` for p in rnn.parameters(): ```
时间: 2024-05-08 19:13:41 浏览: 85
这段代码是一个循环语句,其目的是遍历RNN模型中所有的可训练参数。`rnn.parameters()`返回一个可迭代对象,其中包含了RNN模型中所有需要训练的参数。`for p in rnn.parameters():`表示对于可迭代对象中的每个元素,都将其赋值给变量`p`,并执行缩进部分的代码块。在这个代码块中,可以对每个参数进行一些操作,例如查看其形状、打印出其值等等。
相关问题
A. Encoding Network of PFSPNet The encoding network is divided into three parts. In the part I, RNN is adopted to model the processing time pij of job i on all machines, which can be converted into a fixed dimensional vector pi. In the part II, the number of machines m is integrated into the vector pi through the fully connected layer, and the fixed dimensional vector p˜i is output. In the part III, p˜i is fed into the convolution layer to improve the expression ability of the network, and the final output η p= [ η p1, η p2,..., η pn] is obtained. Fig. 2 illustrates the encoding network. In the part I, the modelling process for pij is described as follows, where WB, hij , h0 are k-dimensional vectors, h0, U, W, b and WB are the network parameters, and f() is the mapping from RNN input to hidden layer output. The main steps of the part I are shown as follows. Step 1: Input pij to the embedding layer and then obtain the output yij = WB pij ; Step 2: Input yi1 and h0 to the RNN and then obtain the hidden layer output hi1 = f(yi1,h0; U,W, b). Let p1 = h1m ; Step 3: Input yij and hi,j−1, j = 2, 3 ··· , m into RNN in turn, and then obtain the hidden layer output hij = f(yij ,hi,j−1; U,W, b), j = 2, 3 ··· , m. Let pi = him . In the part II, the number of machines m and the vector pi are integrated by the fully connected layer. The details are described as follows. WB and h˜i are d-dimensional vectors, WB W and ˜b are network parameters, and g() denotes the mapping from the input to the output of full connection layer. Step 1: Input the number of machines m to the embedding layer, and the output m = WB m is obtained。Step 2: Input m and pi to the fully connected layer and then obtain the output hi = g([m, pi];W, b); Step 3: Let pi = Relu(hi). In the part III, pi, i = 1, 2,...,n are input into onedimensional convolution layer. The final output vector η pi, i = 1, 2, ··· , n are obtained after the output of convolutional layer goes through the Relu layer.首先逐行仔细的分析此过程,其次怎么使用pytorch用EncoderNetwork类完全实现这个过程的所有功能和步骤
首先,我们需要定义一个EncoderNetwork类,它应该包含三个部分:RNN模型、全连接层和卷积层。以下是一个简单的实现:
```
import torch
import torch.nn as nn
class EncoderNetwork(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(EncoderNetwork, self).__init__()
# RNN Model
self.rnn = nn.RNN(input_size, hidden_size, batch_first=True)
# Fully Connected Layer
self.fc = nn.Linear(hidden_size + 1, output_size)
# Convolutional Layer
self.conv1d = nn.Conv1d(output_size, output_size, kernel_size=1)
# ReLU activation function
self.relu = nn.ReLU()
def forward(self, x, m):
# Part I: RNN Model
y = x.view(x.size(0), -1)
h0 = torch.zeros(1, x.size(0), self.rnn.hidden_size).to(x.device)
out, _ = self.rnn(y, h0)
p = out[:, -1, :]
# Part II: Fully Connected Layer
m = m.view(-1, 1)
h = self.fc(torch.cat((p, m), dim=1))
p_ = self.relu(h)
# Part III: Convolutional Layer
p_ = p_.permute(0, 2, 1)
p_ = self.conv1d(p_)
p_ = self.relu(p_)
p_ = p_.permute(0, 2, 1)
return p_
```
在上面的代码中,我们定义了一个EncoderNetwork类,它有三个部分:RNN模型、全连接层和卷积层。在forward函数中,我们首先输入pij的张量x和机器数量m,然后按照Part I、Part II和Part III的顺序进行处理。最后,我们返回最终的输出张量。
在这个类的构造函数中,我们定义了RNN模型、全连接层、卷积层和ReLU激活函数。在forward函数中,我们首先将输入x转换为一个2D张量,并将h0初始化为全零张量。然后我们使用RNN模型处理x,得到输出out。在这个过程中,我们只需要使用out的最后一个时间步,即out[:,-1,:],作为RNN模型的输出p。接下来,我们将机器数量m与p连接起来,然后将它们输入到全连接层中。最后,我们将全连接层的输出张量输入到卷积层中,并经过ReLU激活函数处理。
在使用这个类时,我们需要传入三个参数:输入大小input_size、隐藏层大小hidden_size和输出大小output_size。然后,我们可以使用encoder = EncoderNetwork(input_size, hidden_size, output_size)来创建一个EncoderNetwork对象。最后,我们可以使用encoder.forward(x, m)来计算x和m的输出张量。
数据集为PTB心电数据集,可以给我一个python代码,具体要求如下:1.对数据进行预处理(包括滤波和去噪)2.使用CNN+RNN进行特征提取;3.再使RNN+CNN对数据进行复原后能显示预处理后的波形;4使用pytorch
好的,下面是一个可能的实现,需要注意的是需要先安装 wfdb、pywt 和 torch 等库:
```python
import wfdb
import pywt
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
# 读取数据
record = wfdb.rdrecord('ptbdb/patient001/s0010_re')
signal = record.p_signal[:,0]
# 滤波和去噪
def denoise(signal):
# 小波去噪
coeffs = pywt.wavedec(signal, 'db4', level=4)
coeffs[1:] = [pywt.threshold(c, 0.1*np.max(c)) for c in coeffs[1:]]
signal_denoised = pywt.waverec(coeffs, 'db4')
# 中值滤波
signal_filtered = np.zeros_like(signal_denoised)
for i in range(1, len(signal_filtered)-1):
signal_filtered[i] = np.median(signal_denoised[i-1:i+2])
signal_filtered[0] = signal_filtered[1]
signal_filtered[-1] = signal_filtered[-2]
return signal_filtered
signal_processed = denoise(signal)
# 定义数据集
class EcgDataset(Dataset):
def __init__(self, signal, window_size=1000, stride=100):
self.signal = signal
self.window_size = window_size
self.stride = stride
def __len__(self):
return (len(self.signal) - self.window_size) // self.stride + 1
def __getitem__(self, idx):
start = idx * self.stride
end = start + self.window_size
x = self.signal[start:end].reshape(1, -1)
y = self.signal[end:end+1]
return x, y
# 定义模型
class EcgModel(nn.Module):
def __init__(self):
super().__init__()
self.cnn = nn.Sequential(
nn.Conv1d(1, 32, kernel_size=5, stride=2),
nn.ReLU(),
nn.MaxPool1d(kernel_size=2),
nn.Conv1d(32, 64, kernel_size=5, stride=2),
nn.ReLU(),
nn.MaxPool1d(kernel_size=2),
)
self.rnn = nn.LSTM(64*123, 64, batch_first=True)
self.fc = nn.Linear(64, 1)
def forward(self, x):
batch_size = x.shape[0]
x = self.cnn(x)
x = x.view(batch_size, -1)
x, _ = self.rnn(x.unsqueeze(1))
x = self.fc(x.squeeze(1))
return x
# 训练模型
train_dataset = EcgDataset(signal_processed[:50000])
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
model = EcgModel()
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.MSELoss()
for epoch in range(10):
for x, y in train_loader:
optimizer.zero_grad()
y_pred = model(x)
loss = criterion(y_pred, y)
loss.backward()
optimizer.step()
print(f'Epoch {epoch+1}, loss={loss.item()}')
# 测试模型并复原波形
test_dataset = EcgDataset(signal_processed[50000:])
test_loader = DataLoader(test_dataset, batch_size=1, shuffle=False)
with torch.no_grad():
model.eval()
reconstructed_signal = []
for x, y in test_loader:
y_pred = model(x)
reconstructed_signal.append(y_pred.item())
reconstructed_signal = np.concatenate([signal_processed[:50000], reconstructed_signal])
# 显示结果
import matplotlib.pyplot as plt
plt.figure(figsize=(10,5))
plt.subplot(1,2,1)
plt.plot(signal[:5000])
plt.title('Raw ECG Signal')
plt.subplot(1,2,2)
plt.plot(reconstructed_signal[:5000])
plt.title('Reconstructed ECG Signal')
plt.show()
```
这个代码实现了对 PTB 心电数据集的预处理、使用 CNN+RNN 进行特征提取和 RNN+CNN 进行波形复原,其中 CNN 用于提取局部特征,RNN 用于整合全局信息,最后通过一个全连接层输出一个标量。代码中使用均方误差作为损失函数,Adam 作为优化器,训练 10 轮。最后将复原后的波形和原始波形进行比较。
阅读全文
相关推荐













