python写入excel不同sheet

时间: 2023-04-19 07:03:12 浏览: 214
可以使用Python中的pandas库来写入Excel不同的sheet。具体步骤如下: 1. 导入pandas库 ```python import pandas as pd ``` 2. 创建Excel文件 ```python writer = pd.ExcelWriter('example.xlsx', engine='xlsxwriter') ``` 3. 创建不同的sheet ```python df1 = pd.DataFrame({'Data': [10, 20, 30, 40]}) df1.to_excel(writer, sheet_name='Sheet1') df2 = pd.DataFrame({'Data': [50, 60, 70, 80]}) df2.to_excel(writer, sheet_name='Sheet2') ``` 4. 保存Excel文件 ```python writer.save() ``` 完整代码如下: ```python import pandas as pd # 创建Excel文件 writer = pd.ExcelWriter('example.xlsx', engine='xlsxwriter') # 创建不同的sheet df1 = pd.DataFrame({'Data': [10, 20, 30, 40]}) df1.to_excel(writer, sheet_name='Sheet1') df2 = pd.DataFrame({'Data': [50, 60, 70, 80]}) df2.to_excel(writer, sheet_name='Sheet2') # 保存Excel文件 writer.save() ```

相关推荐

回答: 在Python中使用Pandas库进行Excel sheet的写入有多种方法。其中一种方法是直接使用Pandas的to_excel()函数来写入数据到Excel文件中的不同sheet。然而,直接使用多个Pandas的to_excel()会造成sheet覆写,最终只显示最后运行的to_excel语句内容。为了避免这个问题,可以使用ExcelWriter对象来创建一个可写入不同sheet的文件,并使用to_excel()函数将数据写入不同的sheet中。例如,可以使用以下代码来实现将两个不同的DataFrame写入到同一个Excel文件的不同sheet中: python import pandas as pd # 创建一个ExcelWriter对象,并指定要写入的文件名 writer = pd.ExcelWriter('xxx.xlsx') # 将第一个DataFrame写入到名为'df1'的sheet中 df1.to_excel(writer, sheet_name='df1') # 将第二个DataFrame写入到名为'df2'的sheet中 df2.to_excel(writer, sheet_name='df2') # 保存并关闭ExcelWriter对象 writer.save() writer.close() 另一种方法是在同一个sheet中接续写入数据。可以使用startrow参数来指定从哪一行开始写入新的数据。以下是一个示例代码,演示了如何在已有的sheet中插入新的数据行: python import pandas as pd # 创建一个ExcelWriter对象,并指定要写入的文件名 writer = pd.ExcelWriter('xxx.xlsx') # 将第一个DataFrame写入到名为'mean±std'的sheet中 text1.to_excel(writer, sheet_name='mean±std', index=False) # 在'mean±std'的sheet中的后面行插入新的数据行 text3.to_excel(writer, sheet_name='mean±std', startrow=6, header=False, index=False) # 将第二个DataFrame写入到名为'CV'的sheet中 text2.to_excel(writer, sheet_name='CV', header=False, index=False) # 保存并关闭ExcelWriter对象 writer.save() writer.close() 以上是两种常用的方法,可以根据实际需求选择适合的方法来写入Excel sheet。123 #### 引用[.reference_title] - *1* [【个人笔记】Python-Pandas写入Excel多个sheets](https://blog.csdn.net/Sixtn/article/details/125600343)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [Python+pandas数据直接写入和接续写入Excel](https://blog.csdn.net/hanyuyuzu/article/details/128978246)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
要在Python中写入Excel,可以使用xlwt模块。首先需要导入xlwt模块,并创建一个Excel表格类型的文件。然后在表格中建立一张sheet表单。接下来,可以使用循环将指定值写入sheet的不同单元格中。最后,将文件保存。下面是一个例子代码: python import numpy as np import xlwt # 随机生成一个3×4的数组(值不超过10) data = np.random.randint(10, size=(3, 4)) # 创建excel表格类型文件 book = xlwt.Workbook(encoding='utf-8', style_compression=0) # 在excel表格类型文件中建立一张sheet表单 sheet = book.add_sheet('sheet1', cell_overwrite_ok=True) # 将指定值写入sheet for i in range(data.shape123 #### 引用[.reference_title] - *1* [【Python】将数据写入excel文件中](https://blog.csdn.net/qq_40445009/article/details/130396876)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [python实现将数据写入Excel文件中](https://blog.csdn.net/guoxuying/article/details/112470819)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
### 回答1: Python Pandas是一种用于数据分析和操作的强大工具。它可以轻松地处理和操作数据,并具有多种格式的导入和导出功能。其中,写入Excel文件常常是数据分析工作必不可少的一个环节。 使用Python Pandas写入Excel文件的方式非常简单。首先需要导入Pandas库,然后将数据(DataFrame)转换为Excel文件并保存到指定路径。 具体操作步骤如下: 1. 导入Pandas库,通常的方式是使用“import pandas as pd”。 2. 准备数据,将数据存入DataFrame中。 3. 创建一个Excel文件,通过“writer = pd.ExcelWriter('文件路径及名称.xlsx')”指定文件路径和名称,其中“pd.ExcelWriter”是Pandas提供的一个类。 4. 将数据(DataFrame)写入Excel表格中,语法为“dataframe.to_excel(writer, sheet_name='Sheet1')”,其中dataframe为需要写入的数据,writer为创建的Excel文件对象,sheet_name为Excel表格的名称。 5. 最后调用“writer.save()”保存Excel文件。 总体而言,Python Pandas写入Excel文件是一个十分简单和高效的过程。无论是初学者还是数据分析专业人士,都可以通过这种方式将数据灵活地保存在Excel文件中。 ### 回答2: Pandas是一个强大的Python数据分析库,它提供了许多工具来处理和操作数据,其中之一就是写入Excel文档。在本文中,我们将学习如何使用Pandas将数据写入Excel。 1. 导入Pandas库 我们需要首先导入Pandas库,使用如下代码导入: python import pandas as pd 2. 准备数据 下一步是准备我们要写入Excel的数据。我们可以使用Pandas的DataFrame对象来创建数据集,或者导入已有的数据集,例如csv,txt等。这里我们使用一个简单的例子,创建一个包含学生姓名和成绩的DataFrame对象: python data = {'姓名': ['张三', '李四', '王五', '赵六'], '成绩': [90, 88, 95, 92]} df = pd.DataFrame(data) 3. 写入Excel 现在我们可以开始将数据写入Excel了。Pandas提供了一个名为to_excel()的方法,它可以将DataFrame写入Excel文件。我们需要指定Excel文件的名称和存储路径,其中文件名应以.xlsx结尾。还可以选择将行和列标签写入Excel文件,指定Sheet名称等。以下是一个完整的示例代码: python # 将数据写入excel文件 filepath = 'example.xlsx' # 文件保存路径和名称 sheetname = '成绩单' # Sheet名称 df.to_excel(filepath, sheet_name=sheetname, index=False) 在上面的示例中,index=False表示不写入行标签,只写入数据。如果不设置这个参数,默认会写入行标签0,1,2等。 4. 写入多个Sheet 除了将一个Sheet写入Excel,Pandas还可以将多个Sheet写入同一个Excel文件。我们只需要在to_excel()方法中指定要写入的Sheet名称即可。以下是一个示例代码: python # 写入多个sheet filepath = 'example.xlsx' with pd.ExcelWriter(filepath) as writer: df1.to_excel(writer, sheet_name='Sheet1', index=False) df2.to_excel(writer, sheet_name='Sheet2', index=False) 在上面的示例中,我们使用了pd.ExcelWriter()方法创建了一个Excel文件对象,然后在to_excel()方法中指定了要写入的不同Sheet的名称。 总结 通过上面的例子,我们学习了如何使用Pandas库将数据写入Excel文档。使用Pandas,我们可以很容易地将数据从各种数据源(如csv,txt等)导入到DataFrame对象,然后将其写入Excel文件。Pandas还提供了许多其他方法,例如按条件过滤数据,对数据进行统计分析等。无论您是数据分析师、数据科学家还是开发人员,Pandas对于数据处理和分析都是非常有用的工具之一。 ### 回答3: Python中的pandas库是一种用于数据分析的工具。在数据分析中,我们通常需要将处理后的数据保存到excel表格中以便于后续的使用和分享。因此,pandas库提供了将数据写入excel表格的功能。 首先,我们需要使用pandas库中的DataFrame类来创建数据表格。接着,使用to_excel()方法将数据表格写入excel文件。下面是一个示例代码: python import pandas as pd # 创建数据表格 data = {'姓名': ['张三', '李四', '王五'], '年龄': [18, 20, 22], '性别': ['男', '男', '女']} df = pd.DataFrame(data) # 写入excel文件 df.to_excel('data.xlsx', sheet_name='Sheet1', index=False) 以上代码首先创建了一个数据表格,并将其存储在变量df中。然后,使用to_excel()方法将df中的数据写入到名为data.xlsx的excel文件中的Sheet1工作表中。index=False参数表示不将行索引保存到excel文件中。 对于更加详细的pandas写入excel方法的使用,可以参考pandas官方文档或相关教程。

最新推荐

python向已存在的excel中新增表,不覆盖原数据的实例

下面小编就为大家分享一篇python向已存在的excel中新增表,不覆盖原数据的实例,具有很好超参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

电影网站系统.zip

电影网站系统

电子表格常用函数公式.pdf

电子表格常用函数公式.pdf

8086 汇编语言子程序程序设计.pdf

8086 汇编语言子程序程序设计.pdf

代码随想录最新第三版-最强八股文

这份PDF就是最强⼋股⽂! 1. C++ C++基础、C++ STL、C++泛型编程、C++11新特性、《Effective STL》 2. Java Java基础、Java内存模型、Java面向对象、Java集合体系、接口、Lambda表达式、类加载机制、内部类、代理类、Java并发、JVM、Java后端编译、Spring 3. Go defer底层原理、goroutine、select实现机制 4. 算法学习 数组、链表、回溯算法、贪心算法、动态规划、二叉树、排序算法、数据结构 5. 计算机基础 操作系统、数据库、计算机网络、设计模式、Linux、计算机系统 6. 前端学习 浏览器、JavaScript、CSS、HTML、React、VUE 7. 面经分享 字节、美团Java面、百度、京东、暑期实习...... 8. 编程常识 9. 问答精华 10.总结与经验分享 ......

事件摄像机的异步事件处理方法及快速目标识别

934}{基于图的异步事件处理的快速目标识别Yijin Li,Han Zhou,Bangbang Yang,Ye Zhang,Zhaopeng Cui,Hujun Bao,GuofengZhang*浙江大学CAD CG国家重点实验室†摘要与传统摄像机不同,事件摄像机捕获异步事件流,其中每个事件编码像素位置、触发时间和亮度变化的极性。在本文中,我们介绍了一种新的基于图的框架事件摄像机,即SlideGCN。与最近一些使用事件组作为输入的基于图的方法不同,我们的方法可以有效地逐个事件处理数据,解锁事件数据的低延迟特性,同时仍然在内部保持图的结构。为了快速构建图,我们开发了一个半径搜索算法,该算法更好地利用了事件云的部分正则结构,而不是基于k-d树的通用方法。实验表明,我们的方法降低了计算复杂度高达100倍,相对于当前的基于图的方法,同时保持最先进的性能上的对象识别。此外,我们验证了我们的方�

下半年软件开发工作计划应该分哪几个模块

通常来说,软件开发工作可以分为以下几个模块: 1. 需求分析:确定软件的功能、特性和用户需求,以及开发的目标和约束条件。 2. 设计阶段:根据需求分析的结果,制定软件的架构、模块和接口设计,确定开发所需的技术和工具。 3. 编码实现:根据设计文档和开发计划,实现软件的各项功能和模块,编写测试用例和文档。 4. 测试阶段:对软件进行各种测试,包括单元测试、集成测试、功能测试、性能测试、安全测试等,确保软件的质量和稳定性。 5. 发布和部署:将软件打包发布,并进行部署和安装,确保用户可以方便地使用软件。 6. 维护和更新:对软件进行维护和更新,修复漏洞和Bug,添加新的特性和功能,保证

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

开集域自适应方法及其在靶点发现中的应用

9322基于开集域自适应的新靶点发现Taotao Jing< $,Hongfu LiuXiang,and Zhengming Ding<$†美国杜兰大学计算机科学系‡美国布兰代斯大学Michtom计算机科学学院网址:tjing@tulane.edu,hongfuliu@brandeis.edu,网址:www.example.com,zding1@tulane.edu摘要开集域自适应算法(OSDA)认为目标域包含了在外部源域中未观察到的新类别的样本不幸的是,现有的OSDA方法总是忽略了看不见的类别的信息的需求,并简单地将它们识别为“未知”集合而没有进一步的这促使我们通过探索底层结构和恢复其不可解释的语义属性来更具体地理解未知类别。在本文中,我们提出了一种新的框架,以准确地识别目标领域中的可见类别,并有效地恢复未见过的类别的语义属性具体而言,结构保持部分对齐开发,通过域不变的特征学习识别看到的基于视觉图的属性传播是为了通过视觉语义映射将可见属�

yolov8部署mac

很抱歉,YoloV8并不支持在macOS上进行部署。YoloV8是基于深度学习框架Darknet开发的,Darknet支持Linux和Windows操作系统。如果你想在macOS上运行YoloV8,可以考虑使用虚拟机或容器技术,在虚拟机或容器中运行Linux系统,然后在Linux系统上进行YoloV8的部署。