用python实现 求解最接近点对问题 的代码 要求 1 随机产生输入点,数量为100, 1000, 10000 2 打印输出不同规模下求解所需的计算时间,运行50次,记录耗时的均值和方差 3 提交输出的截图或照片
时间: 2024-10-10 16:09:20 浏览: 24
在Python中,我们可以使用`random`模块生成随机点,并利用`time`模块来测量计算时间。这里可以使用内置数据结构如列表或numpy数组来存储点,并通过并行计算库(如multiprocessing或多线程)加速求解过程。下面是一个基本的实现思路:
```python
import random
import time
from multiprocessing import Pool
# 定义一个点类
class Point:
def __init__(self, x, y):
self.x = x
self.y = y
def euclidean_distance(point1, point2):
return ((point1.x - point2.x) ** 2 + (point1.y - point2.y) ** 2) ** 0.5
# 函数用于找到两个最近的点
def find_nearest_pair(points):
min_dist = float('inf')
nearest_points = None
for i in range(len(points)):
for j in range(i+1, len(points)):
dist = euclidean_distance(points[i], points[j])
if dist < min_dist:
min_dist = dist
nearest_points = (points[i], points[j])
return nearest_points
# 生成随机点函数
def generate_random_points(n):
return [Point(random.uniform(0, 1), random.uniform(0, 1)) for _ in range(n)]
# 计算并返回单次求解时间
def measure_time(func, points):
start_time = time.time()
func(points)
end_time = time.time()
return end_time - start_time
# 主程序
def main():
point_counts = [100, 1000, 10000]
n_trials = 50
mean_times = []
variance_times = []
for count in point_counts:
trials_results = []
# 使用Pool并行处理
with Pool() as pool:
for _ in range(n_trials):
points = generate_random_points(count)
trial_time = pool.apply(measure_time, args=(find_nearest_pair, points))
trials_results.append(trial_time)
mean_times.append(sum(trials_results) / n_trials)
variance_times.append(sum((t - mean_times[-1]) ** 2 for t in trials_results) / n_trials)
print(f"Mean computation times: {mean_times}")
print(f"Variance of computation times: {variance_times}")
if __name__ == "__main__":
main()
```
请注意,这只是一个基础示例,实际运行可能会更复杂,需要考虑数据存储、文件I/O以及结果可视化等步骤。运行这个代码后,你可以截取屏幕截图或保存计算结果以便进一步分析。
阅读全文