module clk_div( input wire Clk , //system clock 100MHz input wire Rst_n , //reset ,low valid output wire clk_us // ); //Parameter Declarations parameter CNT_MAX = 9'd100;//1us的计数值为 50 * Tclk(10ns) //Interrnal wire/reg declarations reg [5:00] cnt ; //Counter wire add_cnt ; //Counter Enable wire end_cnt ; //Counter Reset //Logic Description always @(posedge Clk or negedge Rst_n)begin if(!Rst_n)begin cnt <= 'd0; end else if(add_cnt)begin if(end_cnt)begin cnt <= 'd0; end else begin cnt <= cnt + 1'b1; end end else begin cnt <= cnt; end end assign add_cnt = 1'b1; assign end_cnt = add_cnt && cnt >= CNT_MAX - 9'd1; assign clk_us = end_cnt; endmodule

时间: 2024-04-06 13:32:46 浏览: 29
这是一个Verilog HDL的模块,实现了一个时钟分频器的功能。输入是一个系统时钟 Clk,输出是一个按照一定比例分频后的时钟 clk_us,其周期为 1us。 具体实现细节如下: 1. 声明了一个常量 CNT_MAX,它的值是 100,表示计数器的最大值为 100。 2. 声明了三个信号:cnt(计数器)、add_cnt(计数器使能)、end_cnt(计数器重置使能)。 3. 在 always 块中,根据 Clk 的上升沿或 Rst_n 的下降沿,更新计数器的值。 4. 计数器的值会在每个时钟周期加 1,直到达到最大值 CNT_MAX。 5. 一旦计数器达到最大值,end_cnt 信号会被置为 1,计数器会被重置为 0。 6. 最后,根据 end_cnt 信号的状态,将 clk_us 信号置为 1 或 0,实现时钟分频的功能。 如果您需要重写这段代码,可以根据需求修改计数器的最大值 CNT_MAX,以实现不同的分频比例。也可以根据需要修改计数器的启动和重置条件,以实现更加灵活的时钟分频器。
相关问题

module e_and_t( input wire Clk , //system clock 100MHz input wire Rst_n , //reset ,low valid input wire echo , // output wire trig , //触发测距信号 output wire [9:00] data_o //检测距离,保留3整数,单位:cm ); //Interrnal wire/reg declarations wire clk_us; // //Module instantiations , self-build module clk_div clk_div( /*input wire */.Clk (Clk ), //system clock 100MHz /*input wire */.Rst_n (Rst_n ), //reset ,low valid /*output wire */.clk_us (clk_us ) // ); hc_sr_trig hc_sr_trig( /*input wire */.clk_us (clk_us ), //system clock 1MHz /*input wire */.Rst_n (Rst_n ), //reset ,low valid /*output wire */.trig (trig ) //触发测距信号 ); hc_sr_echo hc_sr_echo( /*input wire */.Clk (Clk ), //clock 100MHz /*input wire */.clk_us (clk_us ), //system clock 1MHz /*input wire */.Rst_n (Rst_n ), //reset ,low valid /*input wire */.echo (echo ), // /*output reg [9:00]*/.data_o (data_o ) //检测距离,保留3位整数,*1000实现 ); //Logic Description endmodule

这段代码是一个 Verilog HDL 的模块 e_and_t,它实现了 HC-SR04 超声波测距模块的驱动。模块有四个输入信号:系统时钟 Clk,复位信号 Rst_n,回声信号 echo,以及一个输出信号 trig,它的作用是触发 HC-SR04 开始测距。此外,模块还有一个 10 位的输出信号 data_o,它是通过 HC-SR04 返回的脉冲宽度计算得到的距离值,单位为 cm,保留了 3 位整数部分。模块内部实例化了两个自定义模块 clk_div 和 hc_sr_trig,它们的作用是将系统时钟 Clk 分频到 1 MHz,并生成 HC-SR04 的触发信号 trig。另外,模块还实例化了一个自定义模块 hc_sr_echo,它通过回声信号 echo 和分频后的时钟 clk_us 计算 HC-SR04 返回的脉冲宽度,并将距离值输出到 data_o。

module clk_div( input wire Clk , //system clock 100MHz input wire Rst_n , //reset ,low valid output wire clk_us // ); //Parameter Declarations parameter CNT_MAX = 9'd100;//1us的计数值为 100 * Tclk(10ns) //Interrnal wire/reg declarations reg [5:00] cnt ; //Counter wire add_cnt ; //Counter Enable wire end_cnt ; //Counter Reset //Logic Description always @(posedge Clk or negedge Rst_n)begin if(!Rst_n)begin cnt <= 'd0; end else if(add_cnt)begin if(end_cnt)begin cnt <= 'd0; end else begin cnt <= cnt + 1'b1; end end else begin cnt <= cnt; end end assign add_cnt = 1'b1; assign end_cnt = add_cnt && cnt >= CNT_MAX - 9'd1; assign clk_us = end_cnt; endmodule根据上述代码写出仿真代码并给出解释

以下是基于Verilog的仿真代码,用于测试clk_div模块的功能: ``` module clk_div_tb; // Inputs reg Clk; reg Rst_n; // Outputs wire clk_us; // Instantiate the Unit Under Test (UUT) clk_div uut ( .Clk(Clk), .Rst_n(Rst_n), .clk_us(clk_us) ); initial begin // Initialize Inputs Clk = 0; Rst_n = 0; // Wait for 100 ns for global reset to finish #100; // Release global reset Rst_n = 1; // Toggle clock for 10 us repeat (1000) begin #5 Clk = ~Clk; end // End simulation $finish; end endmodule ``` 在这个仿真代码中,我们首先实例化了clk_div模块,并将其输入和输出与测试程序中的信号连接起来。然后我们使用initial块来对输入信号进行初始化,并在等待全局复位完成后释放复位。随后我们使用repeat循环,每次以5ns的步长在Clk输入端口上切换时钟信号的状态,模拟10us钟的时钟信号。最后我们使用$finish命令来结束仿真。 在clk_div模块中,我们首先声明了三个内部信号:cnt、add_cnt和end_cnt,其中cnt是一个6位寄存器,用于计数,add_cnt和end_cnt是两个辅助信号,用于启用和重置计数器。在always块中,我们根据时钟信号的上升沿和下降沿以及复位信号的下降沿对这些信号进行更新,从而模拟出时钟分频器的功能。在assign块中,我们将add_cnt设置为常量1,将end_cnt设置为当add_cnt为1且cnt计数值达到了CNT_MAX - 1时才为1,从而实现每CNT_MAX个时钟周期产生一个低电平脉冲的功能。最后,我们将end_cnt的值赋给了模块的输出信号clk_us,以便测试程序可以读取它的值进行验证。

相关推荐

module my_uart_tx(clk,rst_n,clk_bps,rd_data,rd_en,empty,rs232_tx); input clk; // 100MHz主时钟 input rst_n; //低电平复位信号 input clk_bps; // clk_bps的高电平为接收或者发送数据位的中间采样点 input[7:0] rd_data; //接收数据寄存器 output rd_en; //接收数据使能 input empty;//fifo空信号 output rs232_tx; // RS232发送数据信号 //--------------------------------------------------------- reg[7:0] tx_data=8'd0; //待发送数据的寄存器 //--------------------------------------------------------- reg tx_en=0; //发送数据使能信号,高有效 reg[3:0] num; reg rd_en=0; reg [2:0] state=3'd0; always@(posedge clk or negedge rst_n) if(!rst_n) state<=3'd0; else case(state) 3'd0://wait if(empty==0) state<=3'd1;//read else state<=3'd0; 3'd1://read_en state<=3'd2; 3'd2://read_data state<=3'd3; 3'd3://send state<=3'd4; 3'd4: if(tx_en==0)//发送完成 state<=3'd0; else state<=3'd4; default:; endcase always@(posedge clk ) if(state==3'd1) rd_en<=1;//读fifo使能 else rd_en<=0; always@(posedge clk or negedge rst_n) if(!rst_n) tx_data<=8'd0; else if(state==3'd3) tx_data<=rd_data;//读fifo数据,把数据存入发送数据寄存器 else tx_data<=tx_data; always @ (posedge clk or negedge rst_n) begin if(!rst_n) begin tx_en <= 1'b0; end else if(state==3'd3) begin //接收数据完毕,准备把接收到的数据发回去 tx_en <= 1'b1; //进入发送数据状态中 end else if(num==4'd11) begin //数据发送完成,复位 tx_en <= 1'b0; end end //--------------------------------------------------------- reg rs232_tx_r; always @ (posedge clk or negedge rst_n) begin if(!rst_n) begin num <= 4'd0; rs232_tx_r <= 1'b1; end else if(tx_en) begin if(clk_bps) begin num <= num+1'b1; case (num) 4'd0: rs232_tx_r <= 1'b0; //发送起始位 4'd1: rs232_tx_r <= tx_data[0]; //发送bit0 4'd2: rs232_tx_r <= tx_data[1]; //发送bit1 4'd3: rs232_tx_r <= tx_data[2]; //发送bit2 4'd4: rs232_tx_r <= tx_data[3]; //发送bit3 4'd5: rs232_tx_r <= tx_data[4]; //发送bit4 4'd6: rs232_tx_r <= tx_data[5]; //发送bit5 4'd7: rs232_tx_r <= tx_data[6];

module seg( input wire clk , //100MHz input wire rst_n , //low valid input wire [9:0] data_in , //待显示数据 output reg [6:0] hex1 , // -共阳极,低电平有效 output reg [6:0] hex2 , // - output reg [6:0] hex3 // - ); //parameter define localparam NUM_0 = 8'b1100_0000, NUM_1 = 8'b1111_1001, NUM_2 = 8'b1010_0100, NUM_3 = 8'b1011_0000, NUM_4 = 8'b1001_1001, NUM_5 = 8'b1001_0010, NUM_6 = 8'b1000_0010, NUM_7 = 8'b1111_1000, NUM_8 = 8'b1000_0000, NUM_9 = 8'b1001_0000, NUM_A = 8'b1000_1000, NUM_B = 8'b1000_0011, NUM_C = 8'b1100_0110, NUM_D = 8'b1010_0001, NUM_E = 8'b1000_0110, NUM_F = 8'b1000_1110, ALL_LIGHT = 8'b0000_0000, LIT_OUT = 8'b1111_1111; //reg 、wire define reg [3:0] cm_hund ;//100cm reg [3:0] cm_ten ;//10cm reg [3:0] cm_unit ;//1cm always @(posedge clk or negedge rst_n)begin if(!rst_n)begin cm_hund <= 'd0; cm_ten <= 'd0; cm_unit <= 'd0; end else begin cm_hund <= data_in / 10 ** 5; cm_ten <= data_in / 10 ** 4 % 10; cm_unit <= data_in / 10 ** 3 % 10; end end always @(posedge clk or negedge rst_n)begin if(!rst_n)begin hex1 <= ALL_LIGHT; hex2 <= ALL_LIGHT; hex3 <= ALL_LIGHT; end else begin hex1 <= hex_data(cm_unit); hex2 <= hex_data(cm_ten); hex3 <= hex_data(cm_hund); end end //always end function [6:0] hex_data; //函数不含时序逻辑相关 input [03:00] data_i;//至少一个输入 begin case(data_i) 'd0:hex_data = NUM_0; 'd1:hex_data = NUM_1; 'd2:hex_data = NUM_2; 'd3:hex_data = NUM_3; 'd4:hex_data = NUM_4; 'd5:hex_data = NUM_5; 'd6:hex_data = NUM_6; 'd7:hex_data = NUM_7; 'd8:hex_data = NUM_8; 'd9:hex_data = NUM_9; default:hex_data = ALL_LIGHT; endcase end endfunction endmodule

最新推荐

recommend-type

基于STM32控制遥控车的蓝牙应用程序

基于STM32控制遥控车的蓝牙应用程序
recommend-type

Memcached 1.2.4 版本源码包

粤嵌gec6818开发板项目Memcached是一款高效分布式内存缓存解决方案,专为加速动态应用程序和减轻数据库压力而设计。它诞生于Danga Interactive,旨在增强LiveJournal.com的性能。面对该网站每秒数千次的动态页面请求和超过七百万的用户群,Memcached成功实现了数据库负载的显著减少,优化了资源利用,并确保了更快的数据访问速度。。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【进阶】Python高级加密库cryptography

![【进阶】Python高级加密库cryptography](https://img-blog.csdnimg.cn/20191105183454149.jpg) # 2.1 AES加密算法 ### 2.1.1 AES加密原理 AES(高级加密标准)是一种对称块密码,由美国国家标准与技术研究院(NIST)于2001年发布。它是一种分组密码,这意味着它一次处理固定大小的数据块(通常为128位)。AES使用密钥长度为128、192或256位的迭代密码,称为Rijndael密码。 Rijndael密码基于以下基本操作: - 字节替换:将每个字节替换为S盒中的另一个字节。 - 行移位:将每一行
recommend-type

linuxjar包启动脚本

Linux中的jar包通常指的是Java Archive(Java归档文件),它是一个包含Java类、资源和其他相关文件的压缩文件。启动一个Java应用的jar包通常涉及到使用Java的Runtime或JVM(Java虚拟机)。 一个简单的Linux启动jar包的脚本(例如用bash编写)可能会类似于这样: ```bash #!/bin/bash # Java启动脚本 # 设置JAVA_HOME环境变量,指向Java安装路径 export JAVA_HOME=/path/to/your/java/jdk # jar包的路径 JAR_FILE=/path/to/your/applicat