r语言错误于jarque.bera.test(Return): 没有"jarque.bera.test"这个函数
时间: 2024-10-18 22:23:08 浏览: 126
R语言是一种专门用于统计计算和图形展示的语言,它的包系统非常丰富,其中包含了许多用于特定任务的函数。然而,并非所有R包中的函数都内置到核心库里,"jarque.bera.test"是一个检验数据是否近似正态分布的统计测试函数,通常会出现在某个统计分析或金融计量相关的包中,如'econometrics'、'tseries' 或 'moments' 等。
如果你看到这个错误,说明你在尝试运行的时候可能忘记加载包含该函数的相应包,或者包版本过旧并未提供此功能。解决办法是:
1. 首先,确认你安装了包含`jarque.bera.test`函数的包,可以使用`library()`函数检查,比如:
```r
library(econometrics) # 如果你认为它在econometrics包中
```
2. 如果还没有安装,你可以使用`install.packages()`安装缺失的包:
```r
install.packages("econometrics")
```
3. 安装完成后,再次加载包并尝试运行函数:
如果还是报错,可能是网络问题或者包本身的问题,需要查看具体的错误信息以及包文档以获取更多帮助。
相关问题
OLS Regression Results Dep. Variable: count R-squared: 0.156 Model: OLS Adj. R-squared: 0.156 Method: Least Squares F-statistic: 2006. Date: Sat, 03 Jun 2023 Prob (F-statistic): 0.00 Time: 13:53:24 Log-Likelihood: -71125. No. Observations: 10886 AIC: 1.423e+05 Df Residuals: 10884 BIC: 1.423e+05 Df Model: 1 Covariance Type: nonrobust coef std err t P>|t| [0.025 0.975] const 6.0462 4.439 1.362 0.173 -2.656 14.748 temp 9.1705 0.205 44.783 0.000 8.769 9.572 Omnibus: 1871.687 Durbin-Watson: 0.369 Prob(Omnibus): 0.000 Jarque-Bera (JB): 3221.966 Skew: 1.123 Prob(JB): 0.00 Kurtosis: 4.434 Cond. No. 60.4请告诉我这个列表对模型的总体详细解释
这个列表为一元线性回归模型的回归结果。其中,Dep. Variable表示因变量为count,R-squared为R平方值,表示模型可以解释因变量变异性的百分比,本模型的R平方值为0.156,说明模型可以解释15.6%的count变异性。Adj. R-squared为调整后的R平方值,考虑了模型自由度和样本量的影响,本模型的Adj. R平方值为0.156,与R平方值相同。Method为最小二乘法,F-statistic表示F值,用于检验模型的整体显著性,P值为0.00,表示模型整体显著。Log-Likelihood为对数似然值,AIC为赤池信息准则,BIC为贝叶斯信息准则,用于模型比较,Df Residuals为残差自由度,Df Model为模型自由度,Covariance Type为协方差类型,本模型为非鲁棒性回归模型。coef为系数,std err为标准误差,t为t值,P>|t|为P值,[0.025 0.975]为置信区间,const为常数项,temp为自变量。通过该回归结果,可以得到count与temp之间存在显著正相关关系,每增加1个单位的temp,count平均增加9.1705个单位。
OLS Regression Results Dep. Variable: count R-squared: 0.156 Model: OLS Adj. R-squared: 0.156 Method: Least Squares F-statistic: 2006. Date: Sat, 03 Jun 2023 Prob (F-statistic): 0.00 Time: 13:53:24 Log-Likelihood: -71125. No. Observations: 10886 AIC: 1.423e+05 Df Residuals: 10884 BIC: 1.423e+05 Df Model: 1 Covariance Type: nonrobust coef std err t P>|t| [0.025 0.975] const 6.0462 4.439 1.362 0.173 -2.656 14.748 temp 9.1705 0.205 44.783 0.000 8.769 9.572 Omnibus: 1871.687 Durbin-Watson: 0.369 Prob(Omnibus): 0.000 Jarque-Bera (JB): 3221.966 Skew: 1.123 Prob(JB): 0.00 Kurtosis: 4.434 Cond. No. 60.4请帮我详细分析这个表格,并对模型做出详细的解释frmse为161.62822792768694,l为161.62822792768694
这是一个线性回归模型的结果表格。该模型的因变量为 count,自变量为 temp。下面是对表格中的各项进行解释:
- Dep. Variable: count:指定了模型的因变量为 count。
- R-squared: 0.156:决定系数 R-squared 为 0.156,表示自变量 temp 可解释因变量 count 的 15.6% 的方差。
- Model: OLS:模型采用最小二乘法(OLS)进行估计。
- Adj. R-squared: 0.156:校正后的决定系数为 0.156,表示模型已经考虑了自变量的个数和样本量对 R-squared 的影响。
- Method: Least Squares:估计方法为最小二乘法。
- F-statistic: 2006.00:F 统计量为 2006.00,用于检验自变量 temp 是否显著影响因变量 count,P 值为 0.00,表明自变量显著影响因变量。
- Prob (F-statistic): 0.00:P 值为 0.00,表明自变量显著影响因变量。
- Time: 13:53:24:模型估计的时间为 13:53:24。
- Log-Likelihood: -71125:对数似然值为 -71125,用于衡量模型的拟合程度。
- No. Observations: 10886:样本量为 10886。
- AIC: 1.423e+05:信息准则 AIC 为 1.423e+05,用于比较模型的优劣性。
- Df Residuals: 10884:剩余自由度为 10884。
- BIC: 1.423e+05:贝叶斯信息准则 BIC 为 1.423e+05,用于比较模型的优劣性。
- Df Model: 1:模型自由度为 1。
- Covariance Type: nonrobust:协方差类型为非鲁棒型,即不考虑异常值对模型的影响。
- coef:系数估计值。
- std err:系数估计值的标准误差。
- t:t 统计量的值。
- P>|t|:t 统计量的 P 值,用于检验系数是否显著。
- [0.025 0.975]:系数估计值的置信区间。
模型的 RMSE(均方根误差)为 161.63,表示模型的平均预测误差为 161.63。同时,l 的值也为 161.63,可能是你在表格中标注的一个符号。但是,我并不清楚它的含义和作用。希望我的解释能对你有所帮助。
阅读全文