双向LSTM pytorch 代码示例
时间: 2023-11-11 07:59:03 浏览: 119
基于pytorch从头实现了单向,多层,双向LSTM,给出了完整使用代码,并与torch自带的LSTM进行了对比实验
5星 · 资源好评率100%
好的,以下是双向LSTM的PyTorch代码示例:
```python
import torch
import torch.nn as nn
class BiLSTM(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size):
super(BiLSTM, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, bidirectional=True)
self.fc = nn.Linear(hidden_size*2, output_size)
def forward(self, x):
h0 = torch.zeros(self.num_layers*2, x.size(0), self.hidden_size).to(device=x.device)
c0 = torch.zeros(self.num_layers*2, x.size(0), self.hidden_size).to(device=x.device)
out, _ = self.lstm(x, (h0, c0))
out = self.fc(out[:, -1, :])
return out
```
其中,`input_size`为输入特征的维度,`hidden_size`为LSTM隐藏层的维度,`num_layers`为LSTM的层数,`output_size`为输出的维度。在`forward`函数中,我们首先初始化LSTM的初始隐藏状态和记忆状态,然后将输入`x`传入LSTM中得到输出`out`,最后将最后一个时间步的输出通过全连接层得到最终的输出。
阅读全文