6-1 邻接矩阵存储图的深度优先遍历 分数 20 全屏浏览题目 切换布局 作者 ds课程组

时间: 2023-12-06 21:01:15 浏览: 212
深度优先遍历(Depth First Search,DFS)是一种针对图的遍历方式,它从图的某一顶点出发,访问此顶点,然后从其中一个邻接点出发再次进行深度优先遍历,直到所有顶点都被访问过为止。 在邻接矩阵存储图的深度优先遍历中,我们首先需要创建一个大小为n*n的矩阵来表示图的邻接关系,其中n为图的顶点数。然后我们需要创建一个大小为n的数组来记录每个顶点是否被访问过。 接下来,我们可以使用递归或者栈来实现深度优先遍历。递归方式下,我们从图中的某个顶点v开始,首先将该顶点标记为已访问,然后依次访问其未被访问过的邻接点,并对这些邻接点递归调用深度优先遍历函数。栈方式下,我们首先将起始顶点v入栈,然后当栈非空时,弹出栈顶元素并访问其未被访问过的邻接点,将这些邻接点入栈,直到栈为空为止。 在实现深度优先遍历的过程中,我们需要注意避免重复访问已经访问过的顶点,以及要考虑图中可能存在多个连通分量的情况。 总的来说,邻接矩阵存储图的深度优先遍历是一种有效的图遍历方法,能够帮助我们了解图的结构和特性。
相关问题

R6-1 邻接矩阵存储图的深度优先遍历

以下是邻接矩阵存储图的深度优先遍历的Python实现: ```python def DFS(MGraph, visited, v): visited[v] = True print(v, end=' ') for w in range(MGraph.Nv): if not visited[w] and MGraph.G[v][w] != 0: DFS(MGraph, visited, w) def DFSTraverse(MGraph): visited = [False] * MGraph.Nv for v in range(MGraph.Nv): if not visited[v]: DFS(MGraph, visited, v) ``` 其中,`MGraph`是邻接矩阵存储的图,`visited`是记录每个顶点是否被访问过的数组,`v`是当前访问的顶点。`DFS`函数是深度优先遍历的核心代码,它首先将当前顶点标记为已访问,并输出该顶点的编号。然后遍历该顶点的所有邻接点,如果邻接点未被访问过且与当前顶点有边相连,则递归访问该邻接点。`DFSTraverse`函数是深度优先遍历的入口,它遍历图中的所有连通块,对于每个连通块,从一个未被访问的顶点开始进行深度优先遍历。

6-1 邻接矩阵存储图的深度优先遍历 (20 分)

### 回答1: 深度优先遍历(DFS)是一种图的遍历方法,它沿着图的深度遍历图的节点,尽可能深入地搜索图的每一条分支。在存储图的邻接矩阵中,可以通过记录访问过的节点,并在矩阵中找到与当前节点相邻的未被访问过的节点,递归地对其进行深度优先遍历,最终实现对整张图的遍历。 ### 回答2: 邻接矩阵是图的一种常用表示方法。在邻接矩阵中,每一个节点用一个数字来表示,矩阵的每一行对应一个节点,每一列对应一个从该节点出发到达的另一个节点。如果两个节点之间有边相连,则在其交点的位置上填写一个相应的数值,否则为空。 深度优先遍历是图遍历的一种方法,它的主要思想是访问一个节点后,遍历它的相邻节点,然后在一个相邻节点中继续寻找可访问的节点,直到找到最深的节点,然后返回找到的最深节点的父节点。 深度优先遍历的具体实现可以用递归或者栈来实现。如果使用邻接矩阵来表示图,则可以使用一个布尔数组记录每个节点是否被访问过,在深度优先遍历开始前将所有节点的访问状态设为未访问状态。 使用递归实现深度优先遍历的过程如下: 1. 将当前节点的访问状态设为已访问状态; 2. 访问当前节点; 3. 对于当前节点的每一个未被访问的相邻节点,递归遍历该节点; 4. 返回父节点。 使用栈实现深度优先遍历的过程如下: 1. 将起始节点压入栈中,并将访问状态设为已访问; 2. 当栈不为空时,弹出栈顶节点,访问该节点; 3. 如果该节点还有未被访问过的相邻节点,则将这些节点按照某个顺序压入栈中,并将访问状态设为已访问; 4. 重复步骤2和3,直到栈为空。 深度优先遍历可以用来查找图中的路径、环、连通分量等信息,也可以用来生成迷宫或者寻找连通区域等应用。 ### 回答3: 深度优先遍历是一种图的遍历方法,可以用于搜索和遍历图中的所有节点。邻接矩阵是一种图的表示方法,可以将图存储为一个二维数组,其中每个元素表示该节点间是否有边相连。 深度优先遍历的步骤为:从任意一个节点开始,先访问该节点。然后选择与该节点相邻的一个未被访问过的节点,继续访问下去。如果所有相邻节点都被访问过,回溯到上一个节点,继续访问它的其他相邻节点,直到所有节点都被访问过。 邻接矩阵存储图的深度优先遍历,可以通过对每一个节点进行遍历,依次访问与该节点相邻且未被访问过的节点。可以用一个布尔数组visited来记录每个节点是否被访问过。具体实现步骤如下: 1. 初始化visited数组为false,表示每个节点都未被访问过; 2. 从任意一个节点开始,将该节点标记为已访问(将visited数组中该节点的值设置为true); 3. 遍历该节点的所有相邻节点,选择未被访问过的相邻节点,继续访问它的相邻节点,直到所有相邻节点都被访问过; 4. 回溯到上一个节点,继续访问它的其他未被访问过的相邻节点,直到所有节点都被访问过。 具体的代码实现如下: ``` void DFS(int v, bool visited[], int n, int **matrix) { visited[v] = true; // 标记该节点为已访问 cout << v << " "; // 访问该节点 for (int i = 0; i < n; i++) { if (matrix[v][i] == 1 && !visited[i]) { // 如果该节点与相邻节点存在边且相邻节点未被访问过 DFS(i, visited, n, matrix); // 继续遍历相邻节点 } } } void DFSTraversal(int **matrix, int n) { bool visited[n]; // 初始化visited数组 for (int i = 0; i < n; i++) { visited[i] = false; } for (int i = 0; i < n; i++) { if (!visited[i]) { // 如果该节点未被访问过,则从该节点开始遍历 DFS(i, visited, n, matrix); } } } ``` 该算法的时间复杂度为O(n^2),其中n为节点数。因为需要遍历每个节点及其相邻节点。如果要优化时间复杂度,可以采用邻接表表示图来存储和遍历图,时间复杂度为O(n+e),其中e为边数。
阅读全文

相关推荐

最新推荐

recommend-type

邻接表或者邻接矩阵为存储结构实现连通无向图的深度优先和广度优先遍历

在这个程序设计任务中,我们需要实现的是连通无向图的深度优先遍历(DFS)和广度优先遍历(BFS),这两种遍历方法是图算法的基础。无向图指的是图中的边没有方向,即任意两个节点之间可以双向连接。 1. **邻接表和...
recommend-type

邻接表存储图深度优先广度优先遍历

邻接表存储图深度优先广度优先遍历 在图论中,图的存储方式有多种,邻接表是其中的一种常见的存储方式。邻接表存储图是一种基于链表的存储方式,每个顶点的邻接点都存储在一个链表中。这种存储方式可以高效地支持图...
recommend-type

【中国房地产业协会-2024研报】2024年第三季度房地产开发企业信用状况报告.pdf

行业研究报告、行业调查报告、研报
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自