讲解下列代码:def make_grid(shape, window=256, min_overlap=32): """ Return Array of size (N,4), where N - number of tiles, 2nd axis represente slices: x1,x2,y1,y2 """ x, y = shape nx = x // (window - min_overlap) + 1 x1 = np.linspace(0, x, num=nx, endpoint=False, dtype=np.int64) x1[-1] = x - window x2 = (x1 + window).clip(0, x) ny = y // (window - min_overlap) + 1 y1 = np.linspace(0, y, num=ny, endpoint=False, dtype=np.int64) y1[-1] = y - window y2 = (y1 + window).clip(0, y) slices = np.zeros((nx,ny, 4), dtype=np.int64) for i in range(nx): for j in range(ny): slices[i,j] = x1[i], x2[i], y1[j], y2[j] return slices.reshape(nx*ny,4)
时间: 2024-04-28 20:23:16 浏览: 88
这是一个 Python 函数,名为 `make_grid`。这个函数接收三个参数:`shape`,`window` 和 `min_overlap`。
函数的作用是将一个形状为 `(x,y)` 的二维数组划分成多个大小为 `window x window` 的矩形块。
具体来说,函数首先根据 `window` 和 `min_overlap` 计算出水平方向和垂直方向上的矩形块数量 `nx` 和 `ny`,然后用 `np.linspace` 函数在水平和垂直方向上均匀分割原始数组,得到每个矩形块的起始和结束位置。这些位置信息存储在 `x1`、`x2`、`y1` 和 `y2` 四个数组中。
接下来,函数使用这些位置信息创建一个形状为 `(nx, ny, 4)` 的零数组 `slices`,其中第三个维度表示每个矩形块的左上角和右下角坐标。然后使用两个嵌套的循环,将每个矩形块的位置信息填充到 `slices` 数组中。
最后,函数使用 `reshape` 方法将 `slices` 数组从形状为 `(nx, ny, 4)` 转换为形状为 `(nx * ny, 4)`,并返回这个一维数组。
总体来说,这个函数的作用是将一个二维数组划分成多个大小相同的矩形块,并返回每个矩形块的位置信息。
相关问题
def make_grid(shape, window=256, min_overlap=32): """ Return Array of size (N,4), where N - number of tiles, 2nd axis represente slices: x1,x2,y1,y2 """ x, y = shape nx = x // (window - min_overlap) + 1 x1 = np.linspace(0, x, num=nx, endpoint=False, dtype=np.int64) x1[-1] = x - window x2 = (x1 + window).clip(0, x) ny = y // (window - min_overlap) + 1 y1 = np.linspace(0, y, num=ny, endpoint=False, dtype=np.int64) y1[-1] = y - window y2 = (y1 + window).clip(0, y) slices = np.zeros((nx,ny, 4), dtype=np.int64) for i in range(nx): for j in range(ny): slices[i,j] = x1[i], x2[i], y1[j], y2[j] return slices.reshape(nx*ny,4)此段代码所运用的想法
这段代码实现了一个将二维数组划分成多个大小相同的矩形块的想法。具体来说:
1. 首先,代码根据输入的 `shape` 参数,获取到数组的行数和列数。
2. 然后,根据输入的 `window` 和 `min_overlap` 参数,计算出水平方向和垂直方向上的矩形块数量 `nx` 和 `ny`,以及每个矩形块的起始和结束位置。
3. 接下来,代码使用 `np.zeros` 函数创建一个形状为 `(nx, ny, 4)` 的零数组 `slices`,其中第三个维度表示每个矩形块的左上角和右下角坐标。
4. 最后,代码使用两个嵌套的循环,将每个矩形块的位置信息填充到 `slices` 数组中,并使用 `reshape` 方法将 `slices` 数组从形状为 `(nx, ny, 4)` 转换为形状为 `(nx * ny, 4)` 的一维数组,并返回该数组。
总体来说,这个想法是将一个较大的二维数组划分成多个小的矩形块,以便于对每个矩形块进行进一步处理。该想法在图像处理等领域中被广泛应用,例如将一张大图片切分成多个小图片进行分析或处理。
请解释以下代码:Rx= Ry- Rn; [U, D]= eig( Rx); dD= diag( D); dD_Q= find( dD> 0); Lambda= dD( dD_Q); U1= U( :, dD_Q); U1_fft= fft( U1, N); V= abs( U1_fft).^ 2; Phi_B= V* Lambda/ P; Phi_mask= mask( Phi_B( 1: N/ 2+ 1), N, Srate, NBITS); Phi_mask= [Phi_mask; flipud( Phi_mask( 2: N/ 2))]; Theta= V'* Phi_mask/ K; Ksi= V'* Phi_w/ K; gain_vals= exp( -eta_v* Ksi./ min( Lambda, Theta)); G= diag( gain_vals); H= U1* G* U1'; sub_start= 1; sub_overlap= zeros( P/2, 1); for m= 1: (2N/P- 1) sub_noisy= noisy( sub_start: sub_start+ P- 1); enhanced_sub_tmp= (H sub_noisy).* subframe_window; enhanced_sub( sub_start: sub_start+ P/2- 1)= ... enhanced_sub_tmp( 1: P/2)+ sub_overlap; sub_overlap= enhanced_sub_tmp( P/2+1: P); sub_start= sub_start+ P/2; end enhanced_sub( sub_start: sub_start+ P/2- 1)= sub_overlap; xi= enhanced_sub'.* frame_window; xfinal( n_start: n_start+ Nover2- 1)= x_overlap+ xi( 1: Nover2); x_overlap= xi( Nover2+ 1: N); n_start= n_start+ Nover2; end xfinal( n_start: n_start+ Nover2- 1)= x_overlap; wavwrite(xfinal, Srate, NBITS, outfile);
这段代码是一个语音增强算法的实现,主要包括以下步骤:
1. 计算语音信号的相关矩阵 Rx,并对 Rx 进行特征值分解,得到特征值 Lambda 和特征向量 U1;
2. 对特征向量 U1 进行快速傅里叶变换(FFT)得到频谱,通过频谱计算语音信号的功率谱 Phi_B,并根据降噪掩码 mask 得到降噪后的功率谱 Phi_mask;
3. 通过 Phi_mask 和 Phi_w 来估计语音信号的噪声功率谱 Theta 和信号加噪比 Ksi;
4. 根据 Theta 和 Ksi 计算各个频带的增益值 gain_vals,并构造增益矩阵 G;
5. 利用增益矩阵 G 对特征向量 U1 进行伸缩,得到增强滤波器 H;
6. 以重叠加窗的方式将语音信号分帧,并对每一帧进行语音增强处理,最后将处理后的语音信号进行叠加和重构。
其中,变量的含义如下:
- Rx:语音信号的相关矩阵;
- U、D:Rx 的特征向量和特征值;
- dD:特征值向量;
- dD_Q:选取 dD 中大于 0 的部分;
- Lambda:选取的特征值;
- U1:选取的特征向量;
- U1_fft:特征向量进行 FFT 后得到的频谱;
- V:频谱的模的平方;
- Phi_B:语音信号的功率谱;
- mask:降噪掩码;
- Phi_mask:降噪后的功率谱;
- Theta:噪声功率谱;
- Ksi:信号加噪比;
- gain_vals:各个频带的增益值;
- G:增益矩阵;
- H:增强滤波器;
- sub_start:分帧起始点;
- sub_overlap:分帧重叠部分;
- sub_noisy:每一帧的语音信号;
- enhanced_sub_tmp:增强后的子帧;
- enhanced_sub:重叠加窗后的子帧;
- xi:重叠加窗后的子帧;
- xfinal:重构后的语音信号;
- x_overlap:重叠部分;
- n_start:重构起始点;
- Nover2:每一帧的长度的一半。
阅读全文