用pytorch实现一个unet网络
时间: 2024-01-04 18:03:47 浏览: 79
以下是一个简单的 PyTorch 实现 U-Net 网络的代码:
```
import torch
import torch.nn as nn
class DoubleConv(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.conv(x)
class UNet(nn.Module):
def __init__(self, in_channels=1, out_channels=2, features=[64, 128, 256, 512]):
super().__init__()
self.ups = nn.ModuleList()
self.downs = nn.ModuleList()
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
# Down part of U-Net
for feature in features:
self.downs.append(DoubleConv(in_channels, feature))
in_channels = feature
# Up part of U-Net
for feature in reversed(features):
self.ups.append(nn.ConvTranspose2d(feature*2, feature, kernel_size=2, stride=2))
self.ups.append(DoubleConv(feature*2, feature))
self.bottleneck = DoubleConv(features[-1], features[-1]*2)
self.final_conv = nn.Conv2d(features[0], out_channels, kernel_size=1)
def forward(self, x):
skip_connections = []
# Down part of U-Net
for down in self.downs:
x = down(x)
skip_connections.append(x)
x = self.pool(x)
# Bottleneck
x = self.bottleneck(x)
# Up part of U-Net
for idx in range(0, len(self.ups), 2):
x = self.ups[idx](x)
skip_connection = skip_connections[len(self.downs)-idx//2-1]
if x.shape != skip_connection.shape:
x = nn.functional.interpolate(x, size=skip_connection.shape[2:], mode='bilinear', align_corners=True)
x = torch.cat((skip_connection, x), dim=1)
x = self.ups[idx+1](x)
# Final conv layer
x = self.final_conv(x)
return x
```
该代码实现了一个简单的 U-Net 网络,包括下采样和上采样部分。在下采样部分,我们使用 `DoubleConv` 模块对输入进行卷积和归一化,然后使用池化层减小空间大小并增加特征通道数。在上采样部分,我们使用转置卷积层进行上采样,并使用 `DoubleConv` 模块进行卷积和归一化。在每个上采样步骤中,我们使用跳跃连接连接相应的下采样层和上采样层。最终,我们使用 1x1 卷积层输出最终的预测结果。
请注意,此实现中的 `DoubleConv` 模块包含两个连续的卷积层和批归一化层,以及 ReLU 激活函数。在 U-Net 中,这个模块通常用于在不同层之间传递信息和特征。
阅读全文