自适应lasso面板分位数回归代码
时间: 2023-09-23 21:07:30 浏览: 251
面板数据的分位数回归
5星 · 资源好评率100%
以下是一个自适应 Lasso 面板分位数回归的 Python 代码示例:
```python
import numpy as np
import pandas as pd
from sklearn.linear_model import LassoCV, QuantileRegressor
# 加载数据
data = pd.read_csv('data.csv')
# 分离自变量和因变量
X = data.drop('y', axis=1)
y = data['y']
# 定义自适应 Lasso 模型
class AdaptiveLassoCV(LassoCV):
def __init__(self, quantile=0.5, **kwargs):
self.quantile = quantile
super().__init__(**kwargs)
def fit(self, X, y):
super().fit(X, y)
self.alpha_ *= np.percentile(np.abs(self.coef_), q=self.quantile*100)
super().fit(X, y)
# 定义面板分位数回归模型
class PanelQuantileRegressor:
def __init__(self, tau=0.5, **kwargs):
self.tau = tau
self.models = {}
self.kwargs = kwargs
def fit(self, X, y, groups):
for group in groups:
X_group = X[groups == group]
y_group = y[groups == group]
model = QuantileRegressor(tau=self.tau, **self.kwargs)
model.fit(X_group, y_group)
self.models[group] = model
def predict(self, X, groups):
y_pred = np.zeros(len(X))
for group in np.unique(groups):
X_group = X[groups == group]
y_pred[groups == group] = self.models[group].predict(X_group)
return y_pred
# 定义自适应 Lasso 面板分位数回归模型
class AdaptivePanelQuantileRegressor(PanelQuantileRegressor):
def __init__(self, tau=0.5, quantile=0.5, **kwargs):
self.quantile = quantile
super().__init__(tau=tau, **kwargs)
def fit(self, X, y, groups):
for group in np.unique(groups):
X_group = X[groups == group]
y_group = y[groups == group]
model = AdaptiveLassoCV(quantile=self.quantile, **self.kwargs)
model.fit(X_group, y_group)
self.models[group] = QuantileRegressor(tau=self.tau)
self.models[group].coef_ = model.coef_
self.models[group].intercept_ = model.intercept_
# 训练自适应 Lasso 面板分位数回归模型
model = AdaptivePanelQuantileRegressor(tau=0.5, quantile=0.5)
model.fit(X, y, groups=data['group'])
# 预测新数据
new_X = pd.read_csv('new_data.csv')
y_pred = model.predict(new_X, groups=new_X['group'])
```
需要注意的是,该代码仅提供了一个示例,实际应用中需要根据数据特点和问题进行调整和优化。
阅读全文