admm-lasso加权分位数回归代码
时间: 2023-09-19 08:09:19 浏览: 144
ADMM for Lasso
以下是admm-lasso加权分位数回归的代码示例:
```python
import numpy as np
from scipy.linalg import norm
def admm_lasso_wqr(X, y, w, lam, rho, alpha, max_iter=1000, tol=1e-4):
n_samples, n_features = X.shape
z = np.zeros(n_features)
u = np.zeros(n_features)
q = np.zeros(n_samples)
p = np.percentile(np.abs(y - np.mean(y)), alpha)
Xw = X * np.sqrt(w.reshape(-1, 1))
yw = y * np.sqrt(w)
inv = np.linalg.inv(Xw.T @ Xw + rho * np.identity(n_features))
for i in range(max_iter):
z_old = z.copy()
q_old = q.copy()
# update z
z = inv @ (Xw.T @ yw + rho * (u - z))
# update q
q = np.maximum(y - X @ z - p, 0) - np.maximum(-y + X @ z - p, 0)
# update u
u = u + rho * (z - q)
# check convergence
r_norm = norm(z - q)
s_norm = norm(-rho * (z - z_old))
eps_pri = np.sqrt(n_features) * tol + tol * max(norm(X @ z), norm(-q))
eps_dual = np.sqrt(n_features) * tol + tol * norm(rho * u)
if r_norm < eps_pri and s_norm < eps_dual:
break
beta = z.copy()
return beta
```
其中,`X`是输入特征矩阵,`y`是目标变量向量,`w`是样本权重向量,`lam`是L1正则化系数,`rho`是ADMM参数,`alpha`是分位数水平,`max_iter`是最大迭代次数,`tol`是收敛阈值。
在函数中,首先根据样本权重`w`对输入特征矩阵和目标变量向量进行加权处理。然后,初始化变量`z`、`u`、`q`,并根据分位数水平`alpha`计算分位数`p`。接着,使用ADMM算法对模型进行迭代优化,更新变量`z`、`q`、`u`,直到满足收敛条件为止。最后,返回稀疏系数向量`beta`。
阅读全文