用公式求π的近似值:π 2 /6=1+1/2 2 +1/3 2 +1/4 2 +。。。 当求和项小于误差时,结束求和。的代码
时间: 2023-11-27 14:54:27 浏览: 489
以下是使用Python编写的计算π近似值的代码:
```python
import math
def calculate_pi(epsilon):
"""
使用公式π^2/6=1+1/2^2+1/3^2+...计算π的近似值,直到求和项小于误差epsilon为止
"""
sum = 0
i = 1
while True:
item = 1 / i ** 2
sum += item
if item < epsilon:
break
i += 1
return math.sqrt(sum * 6)
# 示例:计算误差不超过0.0001的π近似值
print(calculate_pi(0.0001))
```
在该代码中,我们定义了一个`calculate_pi`函数,该函数使用公式π^2/6=1+1/2^2+1/3^2+...计算π的近似值,直到求和项小于误差epsilon为止。我们通过循环计算每一项的值,并将其加入到总和中,直到当前项小于误差值epsilon为止。最后,我们返回计算出的π近似值。
在示例中,我们调用了`calculate_pi`函数并传入误差值0.0001作为参数,计算出误差不超过0.0001的π近似值,并将其打印出来。
相关问题
用公式求π的近似值:π*π/6=1+1/22+1/32+1/42+。。。当求和项小于0.00000001时,结束求和。用python
你可以使用Python编写一个循环来计算圆周率π的近似值,通过Leibniz公式,即\( \frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots \),直到满足精度条件。以下是Python代码示例:
```python
def estimate_pi(accuracy_threshold):
pi = 0.0
denominator = 1
sign = 1
while True:
term = sign / denominator
pi += term
if abs(term) < accuracy_threshold:
break
denominator += 2
sign *= -1
# 将四分之一倍的π转换成π
pi *= 4
return pi
# 设置精度阈值(这里设置为0.00000001)
accuracy = 1e-8
approximate_pi = estimate_pi(accuracy)
print(f"Pi的近似值为: {approximate_pi}")
用公式求π的近似值:π 2 /6=1+1/2 2 +1/3 2 +1/4 2 +。。。 当求和项小于误差时,结束求和
这是著名的巴塞尔问题,可以用无限级数来表示:
π²/6 = 1/1² + 1/2² + 1/3² + ...
根据欧拉公式,我们有:
π²/6 = Σ(n=1,∞) 1/n² = lim(N→∞) Σ(n=1,N) 1/n²
因此,我们可以用以下算法来计算π的近似值:
1. 初始化 sum = 0 和 n = 1
2. 计算 1/n² 并将其加到 sum 中
3. 将 n 加 1
4. 如果 1/n² 小于某个预设的误差,结束循环
5. 否则回到第二步
最终的结果可以通过将 sum 乘以 6 再开平方根得到。
阅读全文