np.vstack([predicted1, predicted2, predicted3, predicted4]).T
时间: 2024-06-15 12:07:35 浏览: 165
np.vstack([predicted1, predicted2, predicted3, predicted4]).T是一个NumPy函数,用于将多个数组按垂直方向堆叠,并且进行转置操作。具体来说,它将输入的四个数组在垂直方向上堆叠起来,并将结果进行转置,即将行变为列,列变为行。
这个函数的作用是将多个预测结果的数组进行整合,使得每个预测结果对应的值在同一行中,并且可以方便地进行后续处理或分析。
相关问题
import pandas as pd import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D features = df[["Bridge length (m)","Pier type","Foundation type","Hole","Span (m)", "Bearing type","Plane linear"]] target = data['Vulnerability grade'] # 生成测试数据网格 x = np.linspace(features['feature1'].min(), features['feature1'].max(), 100) y = np.linspace(features['feature2'].min(), features['feature2'].max(), 100) z = np.linspace(features['feature3'].min(), features['feature3'].max(), 100) X_test = np.meshgrid(x, y, z) X_test = np.vstack((X_test[0].flatten(), X_test[1].flatten(), X_test[2].flatten())).T # 绘制预测结果的空间曲面 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(features['feature1'], features['feature2'], features['feature3'], c=target, cmap='coolwarm', label='Training Data') ax.scatter(X_test[:, 0], X_test[:, 1], X_test[:, 2], c=test_predicted, cmap='coolwarm', label='Predicted Data') ax.set_xlabel('Feature 1') ax.set_ylabel('Feature 2') ax.set_zlabel('Feature 3') ax.legend() plt.show()
在您提供的代码中,有一些问题需要修正。首先,您将特征列存储在`features`变量中,但在生成测试数据网格时,您使用了`features['feature1']`等特征名,这可能是导致KeyError的原因。另外,您没有给出训练模型和进行预测的代码。以下是修正后的示例代码:
```python
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestRegressor
from mpl_toolkits.mplot3d import Axes3D
# 读取数据
data = pd.read_excel('your_data.xlsx') # 替换为您的Excel文件路径
# 提取特征和目标变量
features = data[["Bridge length (m)", "Pier type", "Foundation type", "Hole", "Span (m)", "Bearing type", "Plane linear"]]
target = data['Vulnerability grade']
# 训练随机森林回归模型
rf = RandomForestRegressor(n_estimators=100, random_state=0)
rf.fit(features, target)
# 生成测试数据网格
x = np.linspace(features['Bridge length (m)'].min(), features['Bridge length (m)'].max(), 100)
y = np.linspace(features['Pier type'].min(), features['Pier type'].max(), 100)
z = np.linspace(features['Foundation type'].min(), features['Foundation type'].max(), 100)
X_test = np.meshgrid(x, y, z)
X_test = np.vstack((X_test[0].flatten(), X_test[1].flatten(), X_test[2].flatten())).T
# 使用随机森林模型进行预测
test_predicted = rf.predict(X_test)
# 绘制预测结果的空间曲面
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(features['Bridge length (m)'], features['Pier type'], features['Foundation type'], c=target, cmap='coolwarm', label='Training Data')
ax.scatter(X_test[:, 0], X_test[:, 1], X_test[:, 2], c=test_predicted, cmap='coolwarm', label='Predicted Data')
ax.set_xlabel('Bridge length (m)')
ax.set_ylabel('Pier type')
ax.set_zlabel('Foundation type')
ax.legend()
plt.show()
```
请注意,根据您的数据和需求,您可能需要调整代码中的特征列名、文件路径以及其他绘图参数。确保特征列和目标变量与您的数据一致,并且选择合适的特征列用于绘制空间曲面。
import pandas as pd import numpy as np # 读取 CSV 文件 data = pd.read_csv('data.csv') # 将数据转换为 NumPy 数组 data = data.to_numpy() # 将数据重塑为三维数组 data = data.reshape((data.shape[0], data.shape[1] // 3, 3)) # 训练模型 model = cnn_model(input_shape=data.shape[1:]) model.fit(data, data, epochs=10, batch_size=32) # 对数据进行预测 predicted_data = model.predict(data) # 计算 SNR、MSE 和 PSNR snr = np.mean(np.square(data)) / np.mean(np.square(data - predicted_data)) mse = np.mean(np.square(data - predicted_data)) psnr = 10 * np.log10(np.max(data) ** 2 / mse) # 将预测结果保存为 CSV 文件 predicted_data = predicted_data.reshape((predicted_data.shape[0], -1)) pd.DataFrame(predicted_data).to_csv('predicted_data.csv', index=False)
这段代码主要是读取 CSV 文件,并将其转换为 NumPy 数组。然后将数据重塑为三维数组,并训练一个卷积神经网络模型。模型训练完成后,使用该模型对数据进行预测,并计算预测结果与原始数据之间的 SNR、MSE 和 PSNR。最后将预测结果保存为 CSV 文件。
其中,SNR 是信噪比,用于衡量信号与噪声之间的比例。MSE 是均方误差,用于衡量预测结果与原始数据之间的平均误差。PSNR 是峰值信噪比,用于衡量预测结果与原始数据之间的峰值信噪比。
需要注意的是,在使用这段代码之前,需要先定义 cnn_model 函数来创建卷积神经网络模型。另外,代码中的 batch_size 和 epochs 参数可以根据具体情况进行调整。
阅读全文
相关推荐
















